首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Various pea cultivars, lines, and mutants were studied by the RAPD method. Polymorphic fragments characteristic of certain pea genotypes and which can be used for identifying genotypes were detected. Inheritance of some polymorphic RAPD fragments was studied. Mendelian inheritance of these fragments was shown. By analyzing the data obtained in studies of RAPD polymorphism, genetic distances between different pea cultivars, lines, and mutants were calculated and a genealogic dendogram showing a varying extent of differences between RAPD patterns was constructed. Ten new RAPD markers linked to various pea genes were detected. Genetic distances between RAPD markers and genes to which they are linked were calculated, and the respective disposition of RAPD markers on chromosomes was established.  相似文献   

2.
In order to develop more specific markers that characterize particular regions of the pea genome, the data on nucleotide sequences of RAPD fragments were used for choosing more extended primers, which may be helpful in amplifying a fragment corresponding to the particular DNA region. Of the 14 STS markers obtained from 14 polymorphic RAPD fragments, 12 were polymorphic, i.e., they are SCAR markers that can be used in genetic analysis. The transition from complex RAPD spectra to amplification of a particular SCAR marker substantially facilitates analysis of large samples for the presence or absence of the examined fragment. Inheritance of the developed SCAR markers was studied in F1 and F2. SCAR markers were used to identify various pea lines, cultivars, and mutants. It was established that the study of amplification of STS markers in various pea genotypes at varying temperatures of annealing and the comparison with amplification of the original RAPD fragments in the same genotypes provide an approach for analysis of RAPD polymorphism origin.  相似文献   

3.
Koveza OV  Gostimskiĭ SA 《Genetika》2005,41(11):1522-1530
In order to develop more specific markers that characterize particular regions of the pea genome, the data on nucleotide sequences of RAPD fragments were used for choosing more extended primers, which may be helpful in amplifying a fragment corresponding to the particular DNA region. Of the 14 STS markers obtained from 14 polymorphic RAPD fragments, 12 were polymorphic, i.e., they are SCAR markers that can be used in genetic analysis. The transition from complex RAPD spectra to amplification of a particular SCAR marker substantially facilitates analysis of large samples for the presence or absence of the examined fragment. Inheritance of the developed SCAR markers was studied in F1 and F2. SCAR markers were used to identify various pea lines, cultivars, and mutants. It was established that the study of amplification of STS markers in various pea genotypes at varying temperatures of annealing and the comparison with amplification of the original RAPD fragments in the same genotypes provide an approach for analysis of RAPD polymorphism type.  相似文献   

4.
 Random amplified polymorphic DNA (RAPD) markers linked to two morphological markers ( fa and det), three ramosus genes (rms2, rms3 and rms4) and two genes conferring flowering response to photoperiod in pea (sn, dne) were selected by bulk segregant analysis on F2 populations. Two RAPD fragments were cloned and sequenced to generate the two SCAR markers V20 and S2 which are linked to rms3 and dne, respectively. All these genes, except rms2, were previously located on the pea classical linkage map. Rms2 mapped to linkage group IB which contains the afila gene. Precise genetic maps of the regions containing the genes were obtained and compared to the RAPD map generated from the recombinant inbred-lines population of the cross Térèse×K586. This cross was chosen because several mutants were obtained from cultivars Térèse and Torsdag (K586 was derived from Torsdag). This collection of isogenic lines was used for the construction of F2 mapping populations in which polymorphic RAPD markers were already known and mapped. Moreover, the well-known problem in pea of variability in the linkage associations between crosses was avoided. This work contributes to the precise integration between the classical map and the molecular maps existing in pea. Received: 13 March 1998 / Accepted: 29 April 1998  相似文献   

5.
Random amplified polymorphic DNA (RAPD) markers have been used to characterize the genetic diversity among 35 spring wheat cultivars and lines with different levels of Fusarium resistance. The objectives of this study were to determine RAPD-based genetic similarity between accessions and to derive associations between Fusarium head blight (FHB) and RAPD markers. Two bulked DNA from either highly resistant lines or susceptible lines were used to screen polymorphic primers. Out of 160 screened primers, 17 primers generated reproducible and polymorphic fragments. Genetic similarity calculated from the RAPD data ranged from 0.64 to 0.98. A dendrogram was prepared on the basis of a similarity matrix using the UPGMA algorithm, which corresponded well with the results of principal component analysis and separated the 35 genotypes into two groups. Association analysis between RAPD markers and the FHB index detected three RAPD markers, H19(1000), F2(500) and B1(2400), significantly associated with FHB-resistant genotypes. These results suggest that a collection of unrelated genotypes can be used to identify markers linked to an agronomically important quantitative trait like FHB. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning.  相似文献   

6.
The authors studies on the organization and variation of plant genome with the use of molecular markers are briefly reviewed with special emphasis on random amplified polymorphic DNA (RAPD), inter simple sequence repeat (ISSR), sequence characterized amplified region (SCAR), and cleaved amplified polymorphic sequence (CAPS) markers detected with the use of polymerase chain reaction (PCR). These markers have been demonstrated to be promising for identifying cultivars and determining the purity of genetic strains of pea. Genetic relationships between strains, cultivars, and mutants of pea have been studied. The role of molecular markers in molecular genetic mapping and localizing the genes of commercially important characters of pea has been shown. The possibility of the use of molecular markers for studying somaclonal variation and detecting mutagenic factors in plants during long-term spaceflights is considered. The prospects of using DNA markers for understanding the organization and variability of higher plant genomes are discussed.__________Translated from Genetika, Vol. 41, No. 4, 2005, pp. 480–492.Original Russian Text Copyright © 2005 by Gostimsky, Kokaeva, Konovalov.  相似文献   

7.
The authors' studies on the organization and variation of plant genome with the use of molecular markers are briefly reviewed with special emphasis on random amplified polymorphic DNA (RAPD), inter simple sequence repeat (ISSR), sequence characterized amplified region (SCAR), and cleaved amplified polymorphic sequence (CAPS) markers detected with the use of polymerase chain reaction (PCR). These markers have been demonstrated to be promising for identifying cultivars and determining the purity of genetic strains of pea. Genetic relationships between strains, cultivars, and mutants of pea have been studied. The role of molecular markers in molecular genetic mapping and localizing the genes of commercially important characters of pea has been shown. The possibility of the use of molecular markers for studying somaclonal variation and detecting mutagenic factors in plants during long-term spaceflights is considered. The prospects of using DNA markers for understanding the organization and variability of higher plant genomes are discussed.  相似文献   

8.
Ninety-one potato genotypes (cultivars and breeding lines) selected as resistant or susceptible to pathotype Ro1 of Globodera rostochiensis were screened for the presence of two PCR markers, 0.14 and 0.76 kb in length. Both PCR markers were linked with the H1 gene, located at the distal end of the long arm of chromosome V, and were present in 88 to 100% of the resistant cultivars and breeding lines. The 0.76 kb PCR marker was detected in all resistant genotypes and in approximately 86% of susceptible breeding lines as well as in all susceptible cultivars. The 0.14 kb marker was detected in 88% of resistant breeding lines and in 94% of resistant cultivars. Most of the susceptible genotypes tested (91% of cultivars, but only 50% of breeding lines) did not show the presence of the 0.14 kb marker. We conclude that the 0.14 kb H1 marker is likely to be useful for the proper selection of potato genotypes resistant to the Ro1 pathotype of G. rostochiensis.  相似文献   

9.
In this paper we present a method for the generation of randomly amplified polymorphic DNA (RAPD) markers for sweet potato. These were applied to produce genetic fingerprints of six clonal cultivars and to estimate genetic distances between these cultivars. The level of polymorphism within the species was extremely high. From the 36-decamer random primers used, 170 fragments were amplified, of which 132 (77.6%) were polymorphic. Ten primers resulted in no detected amplification. Of the remaining 26 primers for which amplification was achieved, only one did not reveal polymorphism. Six primers used alone enabled the discrimination of all six genotypes. Pattern analysis, which employed both a classification and ordination method, enabled the grouping of cultivars and the identification of primers which gave greatest discrimination among the cultivars.  相似文献   

10.
Genetic diversity among 31 genotypes of field and garden pea including primitive cultivated forms and widely cultivated varieties of India was studied using 40 random decamer and 9 ISSR primers. A total of 274 amplicons were detected using both types of markers, which amplified 192 RAPD and 82 ISSR amplicons. Average number of bands amplified per primer was higher in case of ISSR (9.1) as compared to RAPDs (4.8). ISSR primers also exhibited higher average polymorphism (89.0%) and resolving power (4.50) than RAPDs (72.4%, 1.87, respectively). Genetic similarity estimates based on the pooled data of both types of markers using Jaccard??s coefficient ranged from 0.58 to 0.85 delineating considerable diversity among the pea genotypes studied. The 31 genotypes clustered in two major groups based on pooled data. Popular cultivars of garden and field pea of the region exhibited high similarities among themselves. However, primitive cultivated forms collected from the higher Indian Himalayas were diverse from the current varieties and hold potential in pea breeding programmes.  相似文献   

11.
 RAPD (random amplified polymorphic DNA) analysis was used to identify molecular markers linked to the Dn2 gene conferring resistance to the Russian wheat aphid (Diuraphis noxia Mordvilko). A set of near-isogenic lines (NILs) was screened with 300 RAPD primers for polymorphisms linked to the Dn2 gene. A total of 2700 RAPD loci were screened for linkage to the resistance locus. Four polymorphic RAPD fragments, two in coupling phase and two in repulsion phase, were identified as putative RAPD markers for the Dn2 gene. Segregation analysis of these markers in an F2 population segregating for the resistance gene revealed that all four markers were closely linked to the Dn2 locus. Linkage distances ranged from 3.3 cM to 4.4 cM. Southern analysis of the RAPD products using the cloned RAPD markers as probes confirmed the homology of the RAPD amplification products. The coupling-phase marker OPB10880c and the repulsion-phase marker OPN1400r were converted to sequence characterized amplified region (SCAR) markers. SCAR analysis of the F2 population and other resistant and susceptible South African wheat cultivars corroborated the observed linkage of the RAPD markers to the Dn2 resistance locus. These markers will be useful for marker-assisted selection of the Dn2 gene for resistance breeding and gene pyramiding. Received: 1 July 1997 / Accepted: 20 October 1997  相似文献   

12.
Random amplification of polymorphic DNA (RAPD) was used to analyze six species, three populations, and seven regional cultivars of barley. A unique pattern of amplified DNA products was obtained for each species of the genus Hordeum. High polymorphism of barley species was revealed. Specific fragments were found in most RAPD patterns; the fragments can be used as molecular markers of corresponding species and subspecies. Several other DNA fragments were shown to serve as molecular markers of the H genome. Specific RAPD patterns were obtained for each population and each cultivar of H. vulgare sensu lato. In total, variation between the populations and between the cultivars was substantially lower than between species. Cluster analysis (UPGMA) was used to estimate genetic distances between the Hordeum species, between the H. spontaneum populations, and between regional H. vulgare cultivars and a dendrogram was constructed.  相似文献   

13.
Random amplification of polymorphic DNA (RAPD) was used to analyze six species, three populations, and seven regional cultivars of barley. A unique pattern of amplified DNA products was obtained for each species of the genus Hordeum.High polymorphism of barley species was revealed. Specific fragments were found in most RAPD patterns; the fragments can be used as molecular markers of corresponding species and subspecies. Several other DNA fragments were shown to serve as molecular markers of the H genome. Specific RAPD patterns were obtained for each population and each cultivar of H. vulgaresensu lato. In total, variation between the populations and between the cultivars was substantially lower than between species. Cluster analysis (UPGMA) was used to estimate genetic distances between theHordeumspecies, between the H. spontaneumpopulations, and between regional H. vulgarecultivars and a dendrogram was constructed.  相似文献   

14.
Molecular characterization of 19 advanced cultivars and landraces of brinjal was carried out using RAPD and ISSR markers. Twenty-nine RAPD primers generated a total of 240 amplified fragments, while 23 anchored and non-anchored ISSR primers produced 299 fragments. Of these, 66 (27.5%) RAPD and 56 (18.73%) ISSR fragments were polymorphic. All the cultivars could be distinguished based on RAPD and/or ISSR profiles. A set of two RAPD primers, OPW 11 and OPX 07, was adequate to distinguish all the 19 cultivars. On the other hand, a minimum of ten ISSR primers were required to achieve the same result. Eleven cultivars could be identified by the unique presence or absence of one to four markers. The correlation between primer Rp and the number of cultivars distinguished by RAPD was r = 0.873, while that for ISSR it was r = 0.327. The correlation between PIC of primer and the number of cultivars distinguished was r = 0.324 for RAPD, while for ISSR primers it was r = ? 0.066. The probability of chance identity between two cultivars for RAPD and ISSR markers was calculated as 8.94×10?4 and 2.25×10?2, respectively. The average Jaccard’s similarity coefficient between cultivars based on combined RAPD and ISSR data was estimated to be 0.919. The UPGMA analysis grouped the cultivars into three main clusters with significant bootstrap support. While the cultivars bred at Indian Agricultural Research Institute, New Delhi formed one sub-cluster; others did not show a prominent region-based clustering.  相似文献   

15.
The genetic distance of 11 cotton genotypes varying in heat tolerance was studied using RAPD markers. Fifty-three random decamer primers were used for the estimation of genetic distance. Among the 53 RAPD primers, which were custom synthesized by GeneLink Inc., UK, 32 were polymorphic and 21 were monomorphic. The 32 polymorphic primers produced 273 fragments, with a mean of 8.3 fragments per primer. The number of polymorphic bands produced in the 11 cotton accessions ranged from 1 to 31. Primer GLC-20 produced 31 polymorphic bands, while two primers, GLB-5 and GLC-12, produced one polymorphic band each. A range of 88.89 to 42.48% genetic similarity was observed among the 11 cotton accessions. The highest genetic similarity was observed between FH-945 and BH-160 (88.89%), whereas the lowest value was found between NIAB-801/2 and FH-945 (42.48%). Unique amplification profiles were produced by most of the cultivars; the differences were sufficient to distinguish them from other genotypes. This confirms the efficacy of RAPD markers for the identification of plant genotypes. An accumulative analysis of amplified products generated by RAPDs was sufficient to assess the genetic diversity among the genotypes. This information should be helpful for formulating breeding and genome mapping programs.  相似文献   

16.
Quantitative trait loci (QTL) have been identified for competence of the mosquito Aedes aegypti to transmit the avian malaria parasite Plasmodium gallinaceum and the human filarial parasite Brugia malayi. Efforts towards the map-based cloning of the associated genes are limited by the availability of genetic markers for fine-scale mapping of the QTL positions. Two F2 mosquito populations were subjected to bulked segregant analysis to identify random amplified polymorphic DNA (RAPD)-PCR fragments linked with the major QTL determining susceptibility to both parasites. Individual mosquitoes for the bulks were selected on the basis of their genotypes at restriction fragment length polymorphism (RFLP) loci tightly linked with the QTL. Pool-positive RAPD fragments were cloned and evaluated as RFLP markers. Of the 62 RAPD/RFLP fragments examined, 10 represented low-copy number sequences. Five of these clones were linked with the major QTL for P. gallinaceum susceptibility (pgs1), of which one clone mapped within the flanking markers that define the QTL interval. The remaining five clones were linked with the major QTL for B. malayi susceptibility (fsb1), and again one clone mapped within the flanking markers that define the QTL interval. In addition, nine RAPD/RFLP fragments were isolated that seem to be of non-mosquito origin.  相似文献   

17.
Genetic diversity among 45 Indian mustard (Brassica Juncea L.) genotypes comprising 37 germplasm collections, five advance breeding lines and three improved cultivars was investigated at the DNA level using the random amplified polymorphic DNA (RAPD) technique. Fifteen primers used generated a total of 92 RAPD fragments, of which 81 (88%) were polymorphic. Of these, 13 were unique to accession 'Pak85559'. Each primer produced four to nine amplified products with an average of 6.13 bands per primer. Based on pairwise comparisons of RAPD amplification products, Nei and Li's similarity coefficients were calculated to evaluate the relationships among the accessions. Pairwise similarity indices were higher among the oilseed accessions and cultivars showing narrow ranges of 0.77-0.99. An unweighted pair-group method with arithmetic averages cluster analysis based on these genetic similarities placed most of the collections and oilseed cultivars close to each other, showing a low level of polymorphism between the accessions used. However, the clusters formed by oilseed collections and cultivars were comparatively distinct from that of advanced breeding lines. Genetically, all of the accessions were classified into a few major groups and a number of individual accessions. Advanced breeding lines were relatively divergent from the rest of the accessions and formed independent clusters. Clustering of the accessions did not show any pattern of association between the RAPD markers and the collection sites. A low level of genetic variability of oilseed mustard was attributed to the selection for similar traits and horticultural uses. Perhaps close parentage of these accessions further contributed towards their little diversity. The study demonstrated that RAPD is a simple and fast technique to compare the genetic relationship and pattern of variation among the gene pool of this crop.  相似文献   

18.
Sequence-characterized amplified regions markers (SCARs) were developed from six randomly amplified polymorphic DNA (RAPD) markers linked to the major QTL region for powdery mildew (Uncinula necator) resistance in a test population derived from the cross of grapevine cultivars “Regent” (resistant) × “Lemberger”(susceptible). RAPD products were cloned and sequenced. Primer pairs with at least 21 nucleotides primer length were designed. All pairs were tested in the F1 progeny of “Regent” × “Lemberger”. The SCAR primers resulted in the amplification of specific bands of expected sizes and were tested in additional genetic resources of resistant and susceptible germplasm. All SCAR primer pairs resulted in the amplification of specific fragments. Two of the SCAR markers named ScORA7-760 and ScORN3-R produced amplification products predominantly in resistant individuals and were found to correlate to disease resistance. ScORA7-760, in particular, is suitable for marker-assisted selection for powdery mildew resistance and to facilitate pyramiding powdery mildew resistance genes from various sources.  相似文献   

19.
I Paran  R Kesseli  R Michelmore 《Génome》1991,34(6):1021-1027
Near-isogenic lines were used to identify restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) markers linked to genes for resistance to downy mildew (Dm) in lettuce. Two pairs of near-isogenic lines that differed for Dm1 plus Dm3 and one pair of near-isogenic lines that differed for Dm11 were used as sources of DNA. Over 500 cDNAs and 212 arbitrary 10-mer oligonucleotide primers were screened for their ability to detect polymorphism between the near-isogenic lines. Four RFLP markers and four RAPD markers were identified as linked to the Dm1 and Dm3 region. Dm1 and Dm3 are members of a cluster of seven Dm genes. Marker CL922 was absolutely linked to Dm15 and Dm16, which are part of this cluster. Six RAPD markers were identified as linked to the Dm11 region. The use of RAPD markers allowed us to increase the density of markers in the two Dm regions in a short time. These regions were previously only sparsely populated with RFLP markers. The rapid screening and identification of tightly linked markers to the target genes demonstrated the potential of RAPD markers for saturating genetic maps.  相似文献   

20.
The gene Yr26 confers resistance to all races of Puccinia striiformis f. sp. tritici (PST), the casual pathogen of wheat stripe rust in China. Here, we report development of a molecular marker closely linked to Yr26 using a resistance gene-analog polymorphism (RGAP) technique. A total of 787 F2 plants and 165 F3 lines derived from the cross Chuanmai 42/Taichung 29 were used for linkage analysis. Eighteen near-isogenic lines (NILs) and 18 Chinese wheat cultivars and advanced lines with different genes for stripe rust resistance were employed for the validation of STS markers. A total of 1,711 RGAP primer combinations were used to test the parents and resistant and susceptible bulks. Five polymorphic RGAP markers were used for genotyping all F2 plants. Linkage analysis showed that the five RGAP markers were closely linked to Yr26 with genetic distances ranging from 0.5 to 2.9 cM. These markers were then converted into STS markers, one, CYS-5, of which was located 0.5 cM to Yr26 and was closely associated with the resistance gene when validated over 18 NILs and 18 Chinese wheat cultivars and lines. The results indicated that CYS-5 can be used in marker-assisted selection targeted at pyramiding Yr26 and other genes for stripe rust resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号