首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aim

Landscape attributes can determine plant–animal interactions via effects on the identity and abundance of the involved species. As most studies have been conducted in a context of habitat loss and fragmentation, we know very little about interaction assembly in new habitats from a landscape approach. This study aimed to test the effect of forest age and connectivity on acorn predation by a guild of predator insects differing in dispersal ability and resilience mechanisms: two weevils (Curculio elephas and C. glandium) and one moth (Cydia fagiglandana) in expanding Quercus ilex forests.

Location

Barcelona, Spain.

Methods

We assessed the proportion of infested acorns and identified the predator at the species level in five patches of connected old forests, connected new forests and isolated new forests. Effects of habitat age and connectivity at three scales (tree, patch and landscape) were analysed using generalized linear mixed‐effects models.

Results

Predation by weevils was positively associated with old connected forests, while moths, with better dispersal ability, were able to predate upon all patches equally. Moreover, C. elephas, the weevil with lower dispersal ability, exhibited colonization credits in the new isolated patches. In spite of these changes in the guild of seed predators, the proportion of infested acorns was non‐significantly different among forests.

Main conclusions

The guild of seed predators may vary depending on forest age and connectivity. However, because those with higher dispersal ability may replace less mobile species, this resulted in zero‐sum effects of landscape attributes on acorn predation (i.e., similar predation rates in well‐connected old forests vs. isolated new forests).
  相似文献   

2.

Question

Anthropogenic edges caused by transport infrastructure such as dirt roads and trails (also known as Soft Linear Developments; SLD) are pervasive in almost every terrestrial ecosystem. Revegetating these edges may reduce some of their negative effects, such as their permeability to biological invasions and detrimental effects on wildlife, potentially becoming suitable habitat for a broad range of species. Selecting species with low post‐dispersal seed predation rates may improve the effectiveness of revegetation programmes.

Location

Mediterranean scrublands in SW Spain.

Methods

We made offerings of a total of 16,000 seeds of eight species of fleshy‐fruit shrubs both along SLD edges and scrubland interiors in two independent blocks in each of three distant locations. Using four types of selective enclosure, we assessed the relative contribution of three seed predator guilds (ants, rodents and birds) to seed predation rates both along SLD edges and scrubland interiors.

Results

The effects of anthropogenic edges on seed predation rates were species‐specific. The large and hard‐seeded species Chamaerops humilis was not predated at all. Juniperus phoenicea and Corema album seeds had higher predation rates in scrubland interiors than in edges. The small‐seeded Rubus ulmifolius experienced relatively low seed predation rates compared to the other species. Predation rates for this species were higher along SLD edges than in scrubland interiors. Ants were the main seed predators in the area, and showed marked preferences for J. macrocarpa and C. album seeds at both SLD edges and scrubland interiors.

Conclusions

Our results show the strong context‐dependency of seed predation rates in both SLD edges and scrubland interiors, and thus the importance of well spatially and temporally replicated studies. Species with large and hard seeds may be good candidates for roadside revegetation programmes. However, the relative suitability of plant species would depend on the seed predator community. Our findings confirm that studies on seed predation may help planning cost‐effective species selection for edge revegetation efforts worldwide.  相似文献   

3.

Background

The Janzen-Connell hypothesis proposes that seed and seedling enemies play a major role in maintaining high levels of tree diversity in tropical forests. However, human disturbance may alter guilds of seed predators including their body size distribution. These changes have the potential to affect seedling survival in logged forest and may alter forest composition and diversity.

Methodology/Principal Findings

We manipulated seed density in plots beneath con- and heterospecific adult trees within a logged forest and excluded vertebrate predators of different body sizes using cages. We show that small and large-bodied predators differed in their effect on con- and heterospecific seedling mortality. In combination small and large-bodied predators dramatically decreased both con- and heterospecific seedling survival. In contrast, when larger-bodied predators were excluded small-bodied predators reduced conspecific seed survival leaving seeds coming from the distant tree of a different species.

Conclusions/Significance

Our results suggest that seed survival is affected differently by vertebrate predators according to their body size. Therefore, changes in the body size structure of the seed predator community in logged forests may change patterns of seed mortality and potentially affect recruitment and community composition.  相似文献   

4.

Aim

The soil seed bank is a key component of the biodiversity of plant communities, but various aspects of its functioning in temperate forest ecosystems are still unknown. We here adopted a trait-based approach to investigate the effects of macro- and microclimatic gradients on the juvenile plant communities from the realized seed bank of two types of European temperate forest.

Location

Oak-dominated forests in Italy and Belgium.

Methods

We analysed the variation of key functional traits (plant height, leaf area, leaf dry weight, specific leaf area and leaf number) of juvenile plants from the realised soil seed bank in relation to elevation (from 0 to 800 m a.s.l.), forest type (thinned and unthinned forest) and distance to the forest edge. We translocated soil samples from the forest core to the edge (and vice versa) and from high- to low-elevation forests to test the effects of edge and warming respectively.

Results

Taller communities developed at the forest edge due to higher light availability and warmer temperatures. The translocation from the core to the edge did not significantly modify mean trait values. Instead, the shadier and cooler microclimate of the forest core reduced the mean leaf area, mean dry weight, height and leaf number in the communities realised from the edge soil. The translocation from high- to lowland forests led to increased values for all traits (except specific leaf area). Edge vs core trait variation was more driven by intraspecific variability, whereas the translocation from high- to low-elevation forests caused trait changes mostly due to species turnover.

Conclusions

Global warming might result in a functional shift of the understorey due to both an early filtering effect on the seedlings from soil seed banks and their adaptive trait adjustments to temperature increase. Furthermore, our study underpins the importance of edge vs core microclimate in driving the functional composition of the realised soil seed bank.  相似文献   

5.
Hornbills (Bucerotidae) are widely regarded as important seed dispersers in tropical forests in Africa and Asia. We investigated how the roosting behavior of wreathed hornbills (Aceros undulatus) influences seed deposition and seedling survival at a roost site in a moist evergreen forest of Khao Yai National Park, Thailand. Fallen fruits and seeds were collected in traps that were placed around a roosting site for 14 months, and seedlings were monitored in adjacent quadrats for 3 years. Seedfall and seedlings of species represented in the hornbill diet occurred at significantly higher densities in the traps and quadrats located beneath the crown of the roosting tree than in those located beyond the crown. With the exception of Cinnamomum subavenium, the seeds and seedlings of most diet species rarely survived beyond the first year. The quality of hornbill dispersal to this roosting site may be poor due to the highly concentrated seedfall, which results in high seed and seedling mortality. However, the number of seeds deposited by each hornbill each day at roosting sites is relatively low. Wreathed hornbills are primarily scatter dispersers during the day and probably serve as agents of seed dispersal in the moist evergreen forest of Khao Yai.  相似文献   

6.

Background  

Drought is a common stressor in many regions of the world and current climatic global circulation models predict further increases in warming and drought in the coming decades in several of these regions, such as the Mediterranean basin. The changes in leaf water content, distribution and dynamics in plant tissues under different soil water availabilities are not well known. In order to fill this gap, in the present report we describe our study withholding the irrigation of the seedlings of Quercus ilex, the dominant tree species in the evergreen forests of many areas of the Mediterranean Basin. We have monitored the gradual changes in water content in the different leaf areas, in vivo and non-invasively, by 1H magnetic resonance imaging (MRI) using proton density weighted (ρw) images and spin-spin relaxation time (T2) maps.  相似文献   

7.
Seed dispersal determines a plant’s reproductive success, range expansion, and population genetic structures. Camellia japonica, a common evergreen tree in Japan, has been the subject of recent genetic studies of population structure, but its mode of seed dispersal has been assumed, without detailed study, to be barochory. The morphological and physiological features of C. japonica seeds, which are large and nutritious, suggest zoochorous dispersal, however. We compared actual distances between mother trees and seedlings with distances attributable to gravity dispersion only, to test the zoochory hypothesis of C. japonica. The animals that transport the seeds for caching were identified experimentally. We also examined the extent to which seed dispersal is affected by the behavior of animal vectors. Seed dispersal by Apodemus speciosus was confirmed by taking photographs of animals that were consuming seeds experimentally deposited on the ground. Camellia seeds hoarded by the rodents under the litter or soil were protected from drying. On the basis of microsatellite analysis of maternal tissue from the seed coat, the mother trees of 28 seedlings were identified. Maternity analysis revealed the average seed-dispersal distance from mother trees was 5.8 m±6.0 SD, a distance greater than initial dispersal by gravity alone. These results indicate that C. japonica is a zoochorous species dispersed by A. speciosus. Fifty percent of the seed dispersal occurred from mature evergreen forests to dwarf bamboo thickets. This directional seed dispersal would contribute to range expansion of C. japonica. Home range sizes of A. speciosus were 0.85 ha at most and covered with different types of vegetation, from evergreen forests to grassland. This low specificity of their microhabitat use might enhance seed dispersal to different types of vegetation.All animal experiments complied with Japanese laws.  相似文献   

8.

Aims

To develop multiplex TaqMan real‐time PCR assays for detection of spinach seedborne pathogens that cause economically important diseases on spinach.

Methods and Results

Primers and probes were designed from conserved sequences of the internal transcribed spacer (for Peronospora farinosa f. sp. spinaciae and Stemphylium botryosum), the intergenic spacer (for Verticillium dahliae) and the elongation factor 1 alpha (for Cladosporium variabile) regions of DNA. The TaqMan assays were tested on DNA extracted from numerous isolates of the four target pathogens, as well as a wide range of nontarget, related fungi or oomycetes and numerous saprophytes commonly found on spinach seed. Multiplex real‐time PCR assays were evaluated by detecting two or three target pathogens simultaneously. Singular and multiplex real‐time PCR assays were also applied to DNA extracted from bulked seed and single spinach seed.

Conclusions

The real‐time PCR assays were species‐specific and sensitive. Singular or multiplex real‐time PCR assays could detect target pathogens from both bulked seed samples as well as single spinach seed.

Significance and Impact of the Study

The freeze‐blotter assay that is currently routinely used in the spinach seed industry to detect and quantify three fungal seedborne pathogens of spinach (C. variabile, S. botryosum and V. dahliae) is quite laborious and takes several weeks to process. The real‐time PCR assays developed in this study are more sensitive and can be completed in a single day. As the assays can be applied easily for routine seed inspections, these tools could be very useful to the spinach seed industry.  相似文献   

9.
Variations in tree architecture and in the genetic structure of Larix kaempferi on Mt. Fuji were surveyed along altitudinal gradients using 11 nSSR loci. In total, 249 individuals from six populations along three trails at altitudes ranging from approximately 1,300 to 2,700 m were investigated. Gradual changes in tree architecture with increasing elevation, from erect trees to flag trees and krummholz mats, were observed in the high-altitude populations (>2,000 m) on all trails. These findings suggest that tree architecture is correlated with the severe environmental conditions associated with increasing elevation, such as strong winds. In contrast to obvious variations in tree architecture, the genetic diversity of populations along the trails was almost uniform (H E = 0.717–0.762) across the altitudinal range. The results of the AMOVA and STRUCTURE analyses, and the analysis for isolation by distance pattern, suggest homogeneous genetic structuring across all populations on Mt. Fuji, while the pairwise F ST showed barriers to gene flow between altitudinal populations that were demarcated as high- or low-altitude populations by Abies-Tsuga forest. Although the evergreen coniferous forests on the mountainside may hinder gene flow, this may be explained by the long-distance seed dispersal of the Japanese larch and/or a short population history resulting from eruptions or slush avalanches, although evergreen coniferous forests on the mountainside may hinder gene flow.  相似文献   

10.
Based on the animal dispersal hypothesis and the predator satiation hypothesis, we examined the effects of seed abundance at both population (i.e., mast seeding) and community levels on seed predation and dispersal of Castanopsis fargesii (Fagaceae), a rodent-dispersed mast species in Eastern Asia. In a subtropical evergreen broadleaved forest in the Dujiangyan region of Sichuan Province, China, individual seeds with coded tin tags were tracked in two contrasting stands (seed-poor and seed-rich) over two years (2000, a low-seed year; 2001, a high-seed year). Our results showed that: (1) small rodents did not harvest the tagged seeds of C. fargesii more rapid in the high-seed year than in the low-seed year in either stand. But, seed harvest was significantly faster in the seed-rich stand than in the seed-poor stand. (2) The removal proportion was significantly lower in the high-seed year than in the low-seed year for either stand, but the removal proportion was slightly higher in the seed-poor stand than in the seed-poor stand. This indicates that high seed abundance decreases seed removal (predator satiation hypothesis). (3) There were only small differences about seed caching, seed survival and seedling establishment of C. fargesii between years and stands. During the survey, no cached seeds survived to geminate in the spring for both stands and years. (4) Mean dispersal distances of the cached seeds are much shorter in the high-seed year (3.1 m) than in the low-seed year (8.1 m) in the seed-rich stand, though similar trend is not examined in the seed-poor stand. Our results indicate that seed predation and dispersal of C. fargesii are influenced by both mast seeding and community-level seed abundance, which is not completely consistent with either the animal dispersal hypothesis or the predator satiation hypothesis, but seems more related to the predator satiation hypothesis.  相似文献   

11.
Aoki K  Kato M  Murakami N 《Molecular ecology》2008,17(14):3276-3289
Climatic changes during glacial periods have had a major influence on the recent evolutionary history of living organisms, even in the warm temperate zone. We investigated phylogeographical patterns of a weevil Curculio hilgendorfi (Curculionidae), a host-specific seed predator of Castanopsis (Fagaceae) growing in the broadleaved evergreen forests in Japan. We examined 2709 bp of mitochondrial DNA for 204 individuals collected from 62 populations of the weevil. Four major haplogroups were detected, in southwestern and northeastern parts of the main islands and in central and southern parts of the Ryukyu Islands. The demographic population expansion was detected for the two groups in the main islands but not for the Ryukyu groups. The beginning time of the expansion was dated to 39 000–59 000 years ago, which is consistent with the end of the last glacial period. Our data also demonstrated that the southwestern population of the main islands has experienced a more severe bottleneck and more rapid population growth after glacial ages than the northeastern population. At least three refugial areas in the main islands were likely to have existed during the last glacial periods, one of which had not previously been recognized by analyses of intraspecific chloroplast DNA variation of several plant species growing in the broadleaved evergreen forests. Our results represent the first phylogeographical and population demographic analysis of an insect species associated with the broadleaved evergreen forests in Japan, and reveal more detailed postglacial history of the forests.  相似文献   

12.
亚热带常绿阔叶林和暖温带落叶阔叶林叶片热值比较研究   总被引:3,自引:0,他引:3  
田苗  宋广艳  赵宁  何念鹏  侯继华 《生态学报》2015,35(23):7709-7717
植物干重热值(GCV)是衡量植物生命活动及组成成分的重要指标之一,反映了植物光合作用中固定太阳辐射的能力。利用氧弹量热仪测定了亚热带和暖温带两个典型森林生态系统常见的276种常见植物叶片的干重热值,探讨了亚热带和暖温带植物热值分布特征,以及不同生活型、乔木类型间植物热值的变化规律。实验结果发现:亚热带常绿阔叶林和暖温带落叶阔叶林叶片热值的平均值分别为17.83 k J/g(n=191)和17.21k J/g(n=85),整体表现为亚热带植物暖温带植物。不同地带性植被的植物叶片热值在不同生活型间表现出相似的规律,其中亚热带常绿阔叶林表现为:乔木(19.09 k J/g)灌木(17.87 k J/g)草本(16.65 k J/g);暖温带落叶阔叶林表现为:乔木(18.41 k J/g)灌木(17.94 k J/g)草本(16.53 k J/g);不同乔木类型间均呈现常绿乔木落叶乔木、针叶乔木阔叶乔木的趋势。落叶阔叶乔木表现为亚热带暖温带,而常绿针叶乔木则呈现亚热带暖温带的趋势。此外,我们对于两个分布区域内的4种针叶树种叶片热值进行了比较,发现华北落叶松(19.32 k J/g,暖温带)杉木(19.40 k J/g,亚热带)马尾松(19.82 k J/g,亚热带)油松(20.95 k J/g,暖温带)。亚热带常绿阔叶林和暖温带落叶阔叶林植物热值的特征及其变化规律,为森林生态系统的能量流动提供了理论基础。  相似文献   

13.

Key message

The understory evergreen trees showed maximal photosynthetic capacity in winter, while the overstory deciduous trees showed this capacity in spring. The time lag in productive ecophysiologically active periods between deciduous overstory and evergreen understory trees in a common temperate forest was clearly related to the amount of overstory foliage.

Abstract

In temperate forests, where deciduous canopy trees and evergreen understory trees coexist, understory trees experience great variation in incident radiation corresponding to canopy dynamics represented by leaf-fall and leaf-out. It is generally thought that changes in the light environment affect understory plants’ ecophysiological traits. Thus, to project and estimate annual energy, water, and carbon exchange between forests and the atmosphere, it is necessary to investigate seasonal variation in the ecophysiological activities of both evergreen trees in the understory and deciduous trees that make up the canopy/overstory. We conducted leaf-scale gas-exchange measurements and nitrogen content analyses for six tree species along their heights throughout a complete year. Photosynthetic capacity as represented by the maximum carboxylation rate (V cmax25) and photosynthetic nitrogen use efficiency (PNUE) of deciduous canopy trees peaked immediately after leaf-out in late May, declined and stabilised during the mid-growing season, and drastically decreased just before leaf-fall. On the other hand, the timing of lowest V cmax25 and PNUE for evergreen understory trees coincided with that of the highest values for canopy trees. Furthermore, understory trees’ highest values appeared just before canopy tree leaf-out, when incident radiation in the understory was highest. This implies that failing to consider seasonal variation in leaf ecophysiological traits for both canopy and understory trees could lead to serious errors in estimating ecosystem productivity and energy balance for temperate forests.
  相似文献   

14.
Spatio-temporal variation in seed predation may strongly influence both plant population dynamics and selection on plant traits. The intensity of seed predation may depend on a number of factors, but the relative importance of previous predator abundance (“local legacy”), spatial distribution of the host plant, environmental factors and plant characteristics has been explored in few species. We monitored seed predation in the perennial herb Primula farinosa, which is dimorphic for scape length, during 5 consecutive years, in a 10-km × 4-km area comprising 79 P. farinosa populations. A transplant experiment showed that the seed predator, the oligophagous tortricid moth Falseuncaria ruficiliana, was not dispersal limited at the spatial scale corresponding to typical distances between P. farinosa populations. Correlations between population characteristics and incidence and intensity of seed predation varied among years. The incidence of the seed predator was positively correlated with host population size and mean number of flowers, while intensity of seed predation in occupied patches was positively related to the frequency of the long-scaped morph in 2 years and negatively related to host population size in 1 year. In both scape morphs, predation tended to increase with increasing frequency of the long morph. There was no evidence of a local legacy; incidence and intensity of seed predation were not related to the abundance of the seed predator in the population in the previous year. Taken together, the results indicate that among-population variation in seed predation intensity is determined largely by patch selection and that the seed predator’s preference for tall and many-flowered inflorescences may not only affect selection on plant traits within host plant populations, but also the overall intensity of seed predation.  相似文献   

15.
Five new species of the Boletaceae (Agaricales) from Japan are described and illustrated: (1) Boletus bannaensis sp. nov. (section Luridi), forming a grayish-brown pileus and rufescent flesh, found in subtropical evergreen broad-leaved forests; (2) Leccinum rhodoporosum sp. nov., forming discolorous red pores, a whitish stipe covered overall with violet-brown to blackish-brown furfuraceous scales and fusoid-cylindrical brown basidiospores, found in subtropical evergreen broad-leaved forests or warm-temperate Quercus-Pinus forests; (3) Pulveroboletus brunneoscabrosus sp. nov., forming a lemon-yellow pulverulent basidiomata covered overall with orange to brownish-orange appressed scales, found in subtropical to warm temperate evergreen broad-leaved forests; (4) Rubinoboletus monstrosus sp. nov., forming a brownish-orange to yellowish-brown pileus and a very short, nonreticulate, hollow stipe, found in subtropical evergreen broad-leaved forests; and (5) Tylopilus fuligineoviolaceus sp. nov., having a deep violet to blackish-brown pileus and brunnescent hymenophore, found in warm temperate Quercus-Castanopsis forests.  相似文献   

16.
Wyatt JL  Silman MR 《Oecologia》2004,140(1):26-35
Animals aid population growth and fitness in tropical forest communities through dispersal and negatively impact populations through seed predation. The interaction between dispersal and seed predation can produce distance- or density-dependence; powerful mechanisms for maintaining species diversity incorporated in the Janzen–Connell model. Large mammals, the highest biomass seed predators of intact Amazonian communities and at risk due to human disturbance, are potentially central to these interactions. This study tests the Janzen–Connell model and investigates the impact of mammalian seed predators on seedling recruitment and maintenance of tree diversity. Patterns of both vertebrate and invertebrate seed predation and seedling recruitment were studied in the two most abundant canopy tree species in western Amazonia (Arecaceae: Astrocaryum murumuru and Iriartea deltoidea). We specifically examined effects of both spatial and temporal variation of the highest biomass seed predator in southwest Amazonian forests, the white-lipped peccary (Tayassu pecari), on recruitment through disturbed and undisturbed sites and through a fortuitous 12 year natural extinction and recolonization event of T. pecari. Distance-dependent seedling recruitment was found in Astrocaryum and Iriartea at both sites. However, the median distance of seedlings was ~1.5× farther from reproductive adults in both palms at the undisturbed site. The number of Iriartea seeds escaping predation increased 6,000% in both space and time due to the decline of T. pecari abundance. The results demonstrate that Janzen–Connell effects are stronger in intact ecosystems and tie these mechanistically to changes in seed predator abundance. This study shows that anthropogenic changes in mammal communities decrease the magnitude of Janzen–Connell effects in Amazonian forests and may result in decreases in tree diversity.  相似文献   

17.
  • Context‐dependency in species interactions is widespread and can produce concomitant patterns of context‐dependent selection. Masting (synchronous production of large seed crops at irregular intervals by a plant population) has been shown to reduce seed predation through satiation (reduction in rates of seed predation with increasing seed cone output) and thus represents an important source of context‐dependency in plant‐animal interactions. However, the evolutionary consequences of such dynamics are not well understood.
  • Here we describe masting behaviour in a Mediterranean model pine species (Pinus pinaster) and present a test of the effects of masting on selection by seed predators on reproductive output. We predicted that masting, by enhancing seed predator satiation, could in turn strengthen positive selection by seed predators for larger cone output. For this we collected six‐year data (spanning one mast year and five non‐mast years) on seed cone production and seed cone predation rates in a forest genetic trial composed by 116 P. pinaster genotypes.
  • Following our prediction, we found stronger seed predator satiation during the masting year, which in turn led to stronger seed predator selection for increased cone production relative to non‐masting years.
  • These findings provide evidence that masting can alter the evolutionary outcome of plant‐seed predator interactions. More broadly, our findings highlight that changes in consumer responses to resource abundance represent a widespread mechanism for predicting and understanding context dependency in plant‐consumer evolutionary dynamics.
  相似文献   

18.
We investigated whether aphid presence and abundance influence the survival of an endophagous pre-dispersal seed predator of the same host plant. We studied a terrestrial community module consisting of one plant (Laburnum anagyroides) and four insect species/groups (an aphid, Aphis cytisorum, a pre-dispersal seed predator bruchid, Bruchidius villosus, aphid-attending ant species, and parasitoids of the bruchid). Two complementary investigations were carried out in parallel: (a) a plant-aphid-ant complex was experimentally manipulated by excluding aphids, ants, or both for 5 years to assess their impacts on the seed predator’s survival and parasitism rate; and (b) different aphid infestation levels on randomly selected infructescences were correlated with plant traits, nutrient allocation pattern, and variables of seed predator’s survival, such as the number of eggs laid and adults emerged influenced by parasitoid activity, for 7 years. We found that ants did not affect bruchid oviposition negatively, but egg-parasitism was significantly decreased by their presence. Plant traits, such as the number of seeds and seed mass, as well as seed predator performance were negatively affected by heavy aphid infestation. Seed predator -infested seeds had no effect on the mass of remaining seeds in the pods. This study suggests that aphids were nevertheless promoting bruchid abundance and survival, depending on their infestation rate.  相似文献   

19.

Aim

Understanding how climate affects species distributions remains a major challenge, with the relative importance of direct physiological effects versus biotic interactions still poorly understood. We focus on three species of resource specialists (crossbill Loxia finches) to assess the role of climate in determining the seasonal availability of their food, the importance of climate and the occurrence of their food plants for explaining their current distributions, and to predict changes in their distributions under future climate change scenarios.

Location

Europe.

Methods

We used datasets on the timing of seed fall in European Scots pine Pinus sylvestris forests (where different crossbill species occur) to estimate seed fall phenology and climate data to determine its influence on spatial and temporal variation in the timing of seed fall to provide a link between climate and seed scarcity for crossbills. We used large‐scale datasets on crossbill distribution, cover of the conifers relied on by the three crossbill species and climate variables associated with timing of seed fall, to assess their relative importance for predicting crossbill distributions. We used species distribution modelling to predict changes in their distributions under climate change projections for 2070.

Results

We found that seed fall occurred 1.5–2 months earlier in southern Europe than in Sweden and Scotland and was associated with variation in spring maximum temperatures and precipitation. These climate variables and area covered with conifers relied on by the crossbills explained much of their observed distributions. Projections under global change scenarios revealed reductions in potential crossbill distributions, especially for parrot crossbills.

Main conclusions

Ranges of resource specialists are directly influenced by the presence of their food plants, with climate conditions further affecting resource availability and the window of food scarcity indirectly. Future distributions will be determined by tree responses to changing climatic conditions and the impact of climate on seed fall phenology.
  相似文献   

20.
植物叶片的非结构性碳水化合物(non-structural carbohydrates,NSC)不仅为植物的代谢过程提供重要能量,还能一定程度上反映植物对外界环境的适应策略。以温带针阔混交林(长白山)、温带阔叶林(东灵山)、亚热带常绿阔叶林(神农架)和热带雨林(尖峰岭)4种森林类型的树种为研究对象,利用蒽酮比色法测定了163种常见乔木叶片可溶性糖、淀粉和NSC(可溶性糖+淀粉)含量,探讨了不同森林类型植物叶片NSC的差异及其地带性变化规律。结果显示:(1)从森林类型上看,植物叶片NSC含量从北到南递减,即温带针阔混交林(170.79 mg/g)>温带阔叶林(100.27 mg/g)>亚热带常绿阔叶林(91.24 mg/g)>热带雨林(80.13 mg/g)。(2)从生活型上看,无论是落叶树还是阔叶树,其叶片可溶性糖、淀粉和NSC含量均表现为:温带针阔混交林>温带阔叶林>亚热带常绿阔叶林>热带雨林;北方森林叶片可溶性糖、淀粉和NSC含量均表现为落叶树种>常绿树种,或阔叶树种>针叶树种。(3)森林植物叶片NSC含量、可溶性糖与淀粉含量比值与年均温和年均降水量均呈显著负相关。研究表明,森林植物叶片可溶性糖、淀粉和NSC含量以及可溶性糖与淀粉含量比值均具有明显的从北到南递减的地带性规律;其NSC含量以及可溶性糖与淀粉含量比值与温度和水分均呈显著负相关的变化规律可能是植物对外界环境适应的重要机制之一。该研究结果不仅为阐明中国主要森林树种碳代谢和生长适应对策提供了数据基础,而且为理解区域尺度森林植被对未来气候变化的响应机理提供新的视角。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号