首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to evaluate the effect of Baccharis glutinosa isolated extract on the growth of Aspergillus flavus and Aspergillus parasiticus, and their aflatoxin B1 production; and growth of Fusarium verticillioides, and their fumonisin B1 production. The three fungi were exposed to an antifungal fraction, designated as fraction F6-1, isolated from B. glutinosa by methanolic extraction followed by silica gel chromatography. The growth of the fungi was evaluated in kinetics of radial extension growth, kinetics of spores germination, length and diameter of hyphae, spores diameter, as well as in aflatoxin B1 and fumonisin B1 production. Fraction F6-1 caused radial growth inhibition of the three fungi mainly F. verticillioides. Spores germination of A. flavus and A. parasiticus was delayed in the early stage of the incubation time, although they completely germinated at 27 h. In contrast, spore germination of F. verticillioides was inhibited 87.7% up to 96 h. The lengths and diameters of hyphae, and spore diameters of the three fungi, were significantly smaller in comparison with those of the controls, and several morphological alterations were observed. Concerning aflatoxin B1 and fumonisin B1, fraction F6-1 did not show any inhibition effect at the concentration used. Fraction F6-1 was able to significantly inhibit the development of the three fungi, mainly F. verticillioides. The strong inhibitory effect of F6-1 on hyphae and spores suggests that it interacted with the fungi cell walls, which caused severe deformities. Nevertheless, this fraction was unable in inhibiting mycotoxin production from the three fungi at the concentration tested.  相似文献   

2.
In agricultural areas, Aspergillus flavus, Aspergillus fumigatus and Aspergillus parasiticus are commonly identified in various feedstuffs and bioaerosols originated from feed handling. Some isolates belonging to these fungal species could produce mycotoxins and constitute a risk factor for human and animal health. In this study, Fourier-transform infrared spectroscopy was used for a rapid detection and characterization of 99 isolates collected from agricultural areas. The results showed a first cluster corresponding to strains previously attributed to the A. fumigatus group according to current taxonomic concepts, and a second cluster divided in 2 groups around reference strains of A. flavus and A. parasiticus species. The toxigenic capacity of isolates was evaluated by high performance liquid chromatography coupled to mass spectrometry. In the A. flavus group, only 6 strains of A. parasiticus and 4 strains of A. flavus were able to produce aflatoxins on culture media. FT-IR spectroscopy, respectively, allowed the differentiation of non-toxigenic and toxigenic A. flavus and A. parasiticus isolates at 75 and 100%. Discrimination between toxigenic and non-toxigenic A. fumigatus was not possible because all of the isolates produced at least one mycotoxin.  相似文献   

3.
The present study was designated to evaluate the antifungal activity and to root out the antifungal plant leaf extracts from this Indian folk-flore. The in vitro antifungal assay was performed by agar diffusion test and minimum inhibitory concentration (MIC) for hexane, ethyl acetate, methanol and distilled water plant leaf extracts. Extraction of 17 different plant leaves was carried out in different solvents such as hexane, ethyl acetate, methanol and distilled water. Among them extractive yield of methanol was maximum than the rest of the three solvents. These extracts were screened for their antifungal activity against nine different fungi. Among these ethyl acetate extracts of Adhatoda vasica, Ocimum sanctum and Holoptelea integrifolia exhibited maximum antifungal activity against Alternaria sp., Aspergillus parasi, Aspergillus nidulans, Trichoderma harzianum and Aspergillus flavus with MIC of 80, 40 and 20 ppm against Aspergillus nidulans and Alternaria sp. Ethyl acetate extracts showed promising antifungal activity against Adhatoda vasica, Ocimum sanctum and Holoptelea integrifolia against Aspergillus nidulans, and Alternaria sp. might be applicable as fungicide against fungal plants disease.  相似文献   

4.
欧美107杨树提取物体外对植物病原真菌的抑制活性   总被引:1,自引:0,他引:1  
制备了欧美107杨树枝条和叶的乙醇粗提物及不同极性溶剂的萃取部分,并测定了它们对植物病原真菌的抑制活性。枝条和叶的乙醇粗提物对棉花枯萎病菌、小麦纹枯病菌、番茄早疫病菌、番茄枯萎病菌、黄瓜枯萎病菌、小麦赤霉以及玉米弯孢等7种植物病原真菌均具有一定的抑制作用。而枝条的乙醇粗提物对杨树溃疡病菌的菌丝生长有一定的促进作用。抗菌活性成分主要集中在乙酸乙酯萃取部分。  相似文献   

5.
【背景】对郁金香的研究主要集中在种质资源、引种栽培、扩繁育种及化学成分分析方面,而关于伊犁野生郁金香内生菌的研究尚未见报道。【目的】从伊犁野生郁金香中筛选出内生真菌并对其进行抑菌及抗氧化活性研究。【方法】采用组织块培养法和平板划线法对伊犁野生郁金香内生菌进行分离纯化;用斜面低温保存法对内生菌进行保存;以形态学方法和分子生物学方法对分离出的内生真菌进行鉴定;通过液体发酵得到次级代谢产物,对乙酸乙酯萃取发酵产物进行滤纸片抑菌分析。使用Fe3+总还原能力法、2-2′二苯基-1-三硝基苯肼(2,2′-diphenyl-1-picrylhydrazyl,DPPH)自由基法、 2′-联氨-双-3-乙基苯并噻唑啉-6-磺酸[2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid,ABTS]自由基法及羟基自由基法比较菌株乙酸乙酯层和水层的抗氧化活性。【结果】从伊犁野生郁金香中分离获得一株内生真菌,经鉴定为曲霉属(Aspergillus)烟曲霉(Aspergillus fumigatus),简称为YGL-1。YGL-1对金黄色葡萄球菌(Staphylo...  相似文献   

6.
The ethanolic extracts of Cybopogon flexuosus and Ageratum conyzoides were tested at concentrations of 20, 40, 60, 80, 100 and 120?mg/ml for their in vitro fungicidal activities against five phytopathogenic fungi isolated from diseased watermelon fruits. The pathogens were Fusarium verticillioides, Aspergillus flavus, Botryodiplodia theobromae, Curvularia lunata and Alternaria cucumeria – Amans as confirmed by pathogenicity tests. All isolated pathogenic fungi were significantly (p?≥?0.05) highly pathogenic with the exception of A. cucumeria which had the least significant (p?≥?0.05) pathogenicity. The inhibitory effects of the extracts increased significantly (p?≥?0.05) with increase in concentrations. Some of the concentrations reduced the mycelial growth of the pathogens to a significant (p?≥?0.05) level. Very strong fungicidal activity was produced by extracts of A. conyzoides at 100?mg/ml against all the fungi. The inhibitory effects of C. flexuosus extracts at 20, 40 and 60?mg/ml were greater than those of C. flexuosus on A. flavus, F. verticillioides and A. cucumeria. The results of the investigation indicated that plant extracts possess antifungal activity that can be exploited as an ideal treatment for future plant disease management in the control of rot of water melon.  相似文献   

7.
Verticillium chlamydosporium produced in submers culture several antifungal and/or phytotoxic compounds which were detected in a bioassay by using the pathogen-host system Puccinia coronata and oat seedlings. The antifungal compounds were also tested against P. recondita on wheat and P. sorghi on corn seedlings. The production of the active metabolic compounds highly depended on the nutrient solution (peptone-Czapek [PC] and malt extract [ME]) and on the fermentation times. Cell-free filtrates of PC-cultures of the fungus were highly phytotoxic; the fungitoxic and phytotoxic compounds were heat-labile and dialyzable. The ethyl acetate extracts of the PC-culture filtrates contained only the antifungal active substances. The antifungal compounds in ME-culture filtrates proved to be heat-stable, could be dialyzed and extracted with ethyl acetate. Ethyl acetate extracts of PC- and ME-culture filtrates at concentrations of 500 μg/ml reduced rust disease incidence by up to 80 % compared to the control treatment. Further studies with extracts of ME-culture filtrates displayed a distinct protective but no systemic activity. The extract interfered with the development of several infection structures of the rust fungi, mostly with the growth of germ tubes as well as with the formation of the aappressoria and haustorial mother cells. Three rust-active fractions were obtained by preparative layer chromatography on silica gel. One of these fractions exhibited phytotoxic activity. The most active antifungal fraction is identical with the macrolid antibiotic monorden which caused a desorientated spiral growth in P. coronata germlings on oat leaves.  相似文献   

8.
Black tea is consumed worldwide and is believed to play a role in cancer prevention. Xerophilic aflatoxigenic fungi are highly hazardous contaminants of tea since they are associated with tea quality impairment and human health risk. The present study reports isolation of such xerophilic and aflatoxigenic fungi associated with marketed tea. Twenty different tea samples collected from the local markets of Tamilnadu, India were investigated for fungal contamination. The results indicated contamination by 0.38% Aspergillus flavus. Other common contaminant fungi including Penicillium spp. (0.30%), Pacelomyces spp. (0.14%), and Mucor spp. (0.19%) were also isolated. Amongst the fungi isolated Aspergillus niger ML01 and A. flavus ML02 were found to be xerophilic aflatoxigenic mycoflora. Phylogenetic analysis based on 28S rRNA revealed their close ancestry. The chloroform and acetone extracts of spices Elettaria cardamomum and Syzygium aromaticum exhibited antifungal inhibitory activity on growth and toxin elaboration of both these xerophilic tea contaminants A. niger ML01 and A. flavus ML02. The results advocate the use of these spices plant or their extracts as novel antimicrobials which may add preservation and flavour in marketed tea.  相似文献   

9.
Freshly harvested soybean, rice and corn from farms and corn-based pelleted feeds were collected from ranches from the coastal and mountain regions in Ecuador during 1998, and assessed for fungal contamination. The most prevalent fungi on pelleted feed were Aspergillus flavus and Fusarium graminearum. The prevalent fungi recovered from soybean were F. verticillioides, F. semitectum, Aspergillus flavus and A. ochraceus. In rice, F. oxysporum was the most prevalent toxigenic fungal species recorded, followed by F. verticillioides and A. flavus. In corn, F. verticillioides was the most prevalent fungus isolated in both the coastal and mountain regions, with high isolation frequencies of A. flavus and A. parasiticus at the coast. Based on the toxigenic species recovered, ochratoxin A may pose a contamination risk for soybean. A higher probability of aflatoxin contamination of corn was found in the coastal samples compared to those of the mountain region, while a risk of fumonisin contamination of corn exists in both regions.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

10.
黄曲霉(Aspergillus flavus)是一种常见的腐生真菌和条件致病菌,其次生代谢产物黄曲霉毒素(Aflatoxin,AFT)具有高度的致癌性和致畸性,严重危及人类和动物健康。近年来,功能基因组学研究发展迅速,在真菌生长发育、挖掘真菌次级代谢产物以及研究包括黄曲霉毒素在内的真菌毒素等方面得到了广泛的应用。功能基因组学在研究黄曲霉与宿主之间的相互作用以及黄曲霉与其他曲霉之间的相互作用方面具有巨大的潜力。然而,黄曲霉功能基因组学受到细胞壁难以破除、耐药性高、筛选标记少、缺陷型菌株构建费力耗时等因素的影响而发展缓慢。概述了黄曲霉的选择标记、遗传转化方法和黄曲霉毒素以及环匹阿尼酸(cyclopiazonic acid, CPA)生物合成的研究进展,并讨论了在提高黄曲霉基因操作效率方面的潜在策略。例如,构建缺乏非同源末端连接(NHEJ)途径的菌株、Cre-loxP重组系统、CRISPR-Cas9等方法,为深入开展黄曲霉遗传学研究提供参考。  相似文献   

11.
在对多孔菌发酵产物进行的活性筛选中,发现三色拟迷孔菌具有抗白假丝酵母、酿酒酵母、烟曲霉、黄曲霉等目标真菌活性。通过应用萃取、柱层析及HPLC等分离手段对其活性组分进行分离纯化,共获得3个化合物。根据波谱数据,化合物1-3的结构分别被鉴定为4-乙二醇基-8-羟基异香豆素、4- (2-羟乙酰基)-8-羟基异香豆素及4-乙二醇基-5,8-二羟基异香豆素。这3个异香豆素首次从拟迷孔菌属中分离得到,且化合物2为其活性成分。  相似文献   

12.
在对多孔菌发酵产物进行的活性筛选中,发现三色拟迷孔菌具有抗白假丝酵母、酿酒酵母、烟曲霉、黄曲霉等目标真菌活性。通过应用萃取、柱层析及HPLC等分离手段对其活性组分进行分离纯化,共获得3个化合物。根据波谱数据,化合物1-3的结构分别被鉴定为4-乙二醇基-8-羟基异香豆素、4- (2-羟乙酰基)-8-羟基异香豆素及4-乙二醇基-5,8-二羟基异香豆素。这3个异香豆素首次从拟迷孔菌属中分离得到,且化合物2为其活性成分。  相似文献   

13.
Purpose of the present study was to evaluate antioxidant, antibacterial, antifungal, and antiviral activities of the petroleum ether, chloroform, ethyl acetate and methanol extracts as well as the alkaloid fraction of Lycopodium clavatum L. (LC) from Lycopodiaceae growing in Turkey. Antioxidant activity of the LC extracts was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging method at 0.2 mg/ml using microplate-reader assay. Antiviral assessment of LC extracts was evaluated towards the DNA virus Herpes simplex (HSV) and the RNA virus Parainfluenza (PI-3) using Madin-Darby Bovine Kidney (MDBK) and Vero cell lines. Antibacterial and antifungal activities of the extracts were tested against standard and isolated strains of the following bacteria; Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Acinobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus, Bacillus subtilis as well as the fungi; Candida albicans and C. parapsilosis. All of the extracts possessed noteworthy activity against ATCC strain of S. aureus (4 μg/ml), while the LC extracts showed reasonable antifungal effect. On the other hand, we found that only the chloroform extract was active against HSV (16–8 μg/ml), while petroleum ether and alkaloid extracts inhibited potently PI-3 (16–4 μg/ml and 32–4 μg/ml, respectively). However, all of the extracts had insignificant antiradical effect on DPPH. In addition, we also analyzed the content of the alkaloid fraction of the plant by capillary gas chromatography-mass spectrometry (GC-MS) and identified lycopodine as the major alkaloid.  相似文献   

14.
Aspergillus flavus is a common filamentous fungus that produces aflatoxins and presents a major threat to agriculture and human health. Previous phylogenetic studies of A. flavus have shown that it consists of two subgroups, called groups I and II, and morphological studies indicated that it consists of two morphological groups based on sclerotium size, called “S” and “L.” The industrially important non-aflatoxin-producing fungus A. oryzae is nested within group I. Three different gene regions, including part of a gene involved in aflatoxin biosynthesis (omt12), were sequenced in 33 S and L strains of A. flavus collected from various regions around the world, along with three isolates of A. oryzae and two isolates of A. parasiticus that were used as outgroups. The production of B and G aflatoxins and cyclopiazonic acid was analyzed in the A. flavus isolates, and each isolate was identified as “S” or “L” based on sclerotium size. Phylogenetic analysis of all three genes confirmed the inference that group I and group II represent a deep divergence within A. flavus. Most group I strains produced B aflatoxins to some degree, and none produced G aflatoxins. Four of six group II strains produced both B and G aflatoxins. All group II isolates were of the “S” sclerotium phenotype, whereas group I strains consisted of both “S” and “L” isolates. Based on the omt12 gene region, phylogenetic structure in sclerotium phenotype and aflatoxin production was evident within group I. Some non-aflatoxin-producing isolates of group I had an omt12 allele that was identical to that found in isolates of A. oryzae.  相似文献   

15.
Infestation of sugar cane nodes by the mealybug Saccharicoccus sacchari (Cockerell) was studied in two commercial fields over a 7-month period in 1987. Natural enemies associated with S. sacchari were fungi Aspergillus parasiticus Speare, Metarhizium anisopliae (Metschnikoff) Sorokin, and Penicillium spp.; the dipteran Cacoxenus perspicax Knab; and the hymenopteran parasitoid Anagyrus saccharicola Timberlake. A. parasiticus was the predominent natural enemy of S. sacchari whereas all other natural enemies showed a low level of activity. The highest prevalence of A. parasiticus was in March when it occurred on 84% of S. sacchari-infested nodes. The prevalence of A. parasiticus declined rapidly during April and May and was absent in the winter months during which nodal infestation of S. sacchari increased. In laboratory bioassays all fungal isolates originating from S. sacchari were more virulent at 28°C than at 24°C. Laboratory studies supported the hypothesis based on field observations that temperature highly influenced the efficacy of A. parasiticus against S. sacchari.  相似文献   

16.
Five separate monoclonal antibodies were produced against whole cell extracts ofAspergillus flavus and ELISA procedures used to characterise the reactivity of the antibodies to various fungal extracts. All five antibodies were specific to the aflatoxin producing fungi,A, flavus andA. parasiticus, and indicated no cross reactivity with otherAspergillus species, genera of several fungi or with other components which may be found in food samples whereA. flavus may be found.  相似文献   

17.
Essential oils extracted from Citrus reticulata and Cymbopogon citratus were tested in vitro against the toxigenic strain of Aspergillus flavus, isolated from the tuberous roots of Asparagus racemosus, used in preparation of herbal drugs. The essential oils completely inhibited the growth of A. flavus at 750 ppm and also exhibited a broad fungitoxic spectrum against nine additional fungi isolated from the roots. Citrus reticulata and Cymbopogon citratus essential oils completely inhibited aflatoxin B1 production at 750 and 500 ppm, respectively. During in vivo investigation, the incidence of fungi and aflatoxin B1 production decreased considerably in essential oil-treated root samples. The findings thus indicate possible exploitation of the essential oils as effective inhibitor of aflatoxin B1 production and as post-harvest fungitoxicant of traditionally used plant origin for the control of storage fungi. These essential oils may be recommended as plant-based antifungals as well as aflatoxin B1 suppressors in post-harvest processing of herbal samples.  相似文献   

18.
The aim of the present study was to examine the efficacy of various seed extracts of Terminalia chebula as an antifungal potential against certain important plant pathogenic fungi. The organic extracts of methanol, ethyl acetate and chloroform at the used concentration of 1500 ppm/disc revealed remarkable antifungal effect as a fungal mycelial growth inhibitor against Fusarium oxysporum, Fusarium solani, Phytophthora capsici and Botrytis cinerea, in the range of 41.6–61.3%, along with MIC values ranging from 62.5 to 500 μg/ml. Also, the extracts had a strong detrimental effect on spore germination of all the tested plant pathogens along with concentration as well as time-dependent kinetic inhibition of B. cinerea. The results obtained from this study suggest that the natural products derived from Terminalia chebula could become an alternative to synthetic fungicides for controlling such important plant pathogenic fungi.  相似文献   

19.
Colletotrichum graminicola is a systemic vascular pathogen that causes anthracnose stalk rot and leaf blight of maize. In the course of an effort to explore the potential presence and roles of C. graminicola metabolites in maize, ethyl acetate extracts of solid substrate fermentations of several C. graminicola isolates from Michigan and Illinois were found to be active against Aspergillus flavus and Fusarium verticillioides, both mycotoxin-producing seed-infecting fungal pathogens. Chemical investigations of the extract of one such isolate (NRRL 47511) led to the isolation of known metabolites monorden (also known as radicicol) and monocillins I–III as major components. Monorden and monocillin I displayed in vitro activity against the stalk- and ear-rot pathogen Stenocarpella maydis while only the most abundant metabolite (monorden) showed activity against foliar pathogens Alternaria alternata, Bipolaris zeicola, and Curvularia lunata. Using LC–HRESITOFMS, monorden was detected in steam-sterilized maize stalks and stalk residues inoculated with C. graminicola but not in the necrotic stalk tissues of wound-inoculated plants grown in an environmental chamber. Monorden and monocillin I can bind and inhibit plant Hsp90, a chaperone of R-proteins. It is hypothesized that monorden and monocillins could support the C. graminicola disease cycle by disrupting maize plant defenses and by excluding other fungi from necrotic tissues and crop residues. This is the first report of natural products from C. graminicola, as well as the production of monorden and monocillins by a pathogen of cereals.  相似文献   

20.
Various species of fungi in the genus Aspergillus are the most common causative agents of invasive aspergillosis and/or producers of hepato-carcinogenic mycotoxins. Salicylaldehyde (SA), a volatile natural compound, exhibited potent antifungal and anti-mycotoxigenic activities to A. flavus and A. parasiticus. By exposure to the volatilized SA, the growth of A. parasiticus was inhibited up to 10–75% at 9.5 mM ≤ SA ≤ 16.0 mM, while complete growth inhibition was achieved at 19.0 mM ≤ SA. Similar trends were also observed with A. flavus. The aflatoxin production, i.e., aflatoxin B1 and B2 (AFB1, AFB2) for A. flavus and AFB1, AFB2, AFG1, and AFG2 for A. parasiticus, in the SA-treated (9.5 mM) fungi was reduced by ~13–45% compared with the untreated control. Using gene deletion mutants of the model yeast Saccharomyces cerevisiae, we identified the fungal antioxidation system as the molecular target of SA, where sod1Δ [cytosolic superoxide dismutase (SOD)], sod2Δ (mitochondrial SOD), and glr1Δ (glutathione reductase) mutants showed increased sensitivity to this compound. Also sensitive was the gene deletion mutant, vph2Δ, for the vacuolar ATPase assembly protein, suggesting vacuolar detoxification plays an important role for fungal tolerance to SA. In chemosensitization experiments, co-application of SA with either antimycin A or strobilurin (inhibitors of mitochondrial respiration) resulted in complete growth inhibition of Aspergillus at much lower dose treatment of either agent, alone. Therefore, SA can enhance antifungal activity of commercial antifungal agents required to achieve effective control. SA is a potent antifungal and anti-aflatoxigenic volatile that may have some practical application as a fumigant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号