首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kainate receptors (KAR) are composed of several distinct subunits and splice variants, but the functional relevance of this diversity remains largely unclear. Here we show that two splice variants of the GluR6 subunit, GluR6a and GluR6b, which differ in their C-terminal domains, do not show distinct functional properties, but coassemble as heteromers in vitro and in vivo. Using a proteomic approach combining affinity purification and MALDI-TOF mass spectrometry, we found that GluR6a and GluR6b interact with two distinct subsets of cytosolic proteins mainly involved in Ca(2+) regulation of channel function and intracellular trafficking. Guided by these results, we provide evidence that the regulation of native KAR function by NMDA receptors depends on the heteromerization of GluR6a and GluR6b and interaction of calcineurin with GluR6b. Thus, GluR6a and GluR6b bring in close proximity two separate subsets of interacting proteins that contribute to the fine regulation of KAR trafficking and function.  相似文献   

2.
Li G  Oswald RE  Niu L 《Biochemistry》2003,42(42):12367-12375
GluR6 is an ionotropic glutamate receptor subunit of the kainate subtype. It plays an essential role in synaptic plasticity and epilepsy. We expressed this recombinant receptor in HEK-293 cells and characterized the glutamate-induced channel-opening reaction, using a laser-pulse photolysis technique with the caged glutamate (gamma-O-(alpha-carboxy-2-nitrobenzyl)glutamate). This technique permits glutamate to be liberated photolytically from the caged glutamate with a time constant of approximately 30 micros. Prior to laser photolysis, the caged glutamate did not activate the GluR6 channel, nor did it inhibit or potentiate the glutamate response. At the transmembrane voltage of -60 mV, pH 7.4 and 22 degrees C, the channel-opening and -closing rate constants were determined to be (1.1 +/- 0. 4) x 10(4) and (4.2 +/- 0.2) x 10(2) s(-1), respectively. The intrinsic dissociation constant of glutamate and the channel-opening probability were found to be 450 +/- 200 microM and 0.96, respectively. These constants are derived from a minimal kinetic mechanism of the channel activation involving the binding of two glutamate molecules. This mechanism describes the time course of the open-channel form of the receptor as a function of glutamate concentration. On the basis of the channel-opening rate constants obtained, the shortest rise time (20-80% of the receptor current response) or the fastest time by which the GluR6Q channel can open is predicted to be 120 micros. The open-channel form of the receptor determines the transmembrane voltage change, which in turn controls synaptic signal transmission between two neurons. The comparison of the channel-opening kinetic rate constants between GluR6Q and GluR2Q(flip), reported in the companion paper, suggests that at a glutamate concentration of 100 microM, for instance, the integrated neuronal signal will be dominated by a slower GluR6Q receptor response, as compared to the GluR2Q(flip) component.  相似文献   

3.
Differences in binding-site residues of GluR2 (AMPAR) and GluR6 (KAR) subunits have been identified that might account for their functional and pharmacological differences. Specifically, residues A518, A689 and N721 in GluR6 replace highly conserved threonine and serine residues found in other ionotropic glutamate receptor (iGluR) subunits. To define how these natural substitutions impact GluR6 function, we used patch clamp recording with ultrafast perfusion to characterize the effects of A518T, A689S and N721T on agonist potency, efficacy and response kinetics. We find these natural substitutions impact GluR6 function less than would be expected from reverse mutations in other iGluRs. There was little effect of individual or combined mutations on glutamate potency, deactivation or desensitization kinetics. Altered recovery kinetics were seen that were greatest after combined mutations. Kainate potency and response kinetics were also unchanged in the mutants, whereas kainate efficacy was reduced in A518T and increased the T/S/T mutant relative glutamate. Notably, A518T and A689S mutation permitted AMPA to bind as a weak competitive antagonist and the effects of these mutations were additive. N721T mutation further enhanced AMPA binding, allowing AMPA to activate and fully desensitize the receptors. Alternative mutations altering side chain length at position 518 produced far greater changes in glutamate affinity and response kinetics than did the natural mutations. We conclude that these nonconserved residues in GluR6 define the size of the agonist-binding pocket, exerting a steric influence on the bound agonist and the extent of binding-domain closure that can influence agonist potency, deactivation, desensitization and recovery kinetics.  相似文献   

4.
Sodium and potassium-exchanging adenosine triphosphatase (Na,K-ATPase) in the kidney is associated with the gamma subunit (gamma, FXYD2), a single-span membrane protein that modulates ATPase properties. Rat and human gamma occur in two splice variants, gamma(a) and gamma(b), with different N termini. Here we investigated their structural heterogeneity and functional effects on Na,K-ATPase properties. Both forms were post-translationally modified during in vitro translation with microsomes, indicating that there are four possible forms of gamma. Site-directed mutagenesis revealed Thr(2) and Ser(5) as potential sites for post-translational modification. Similar modification can occur in cells, with consequences for Na,K-ATPase properties. We showed previously that stable transfection of gamma(a) into NRK-52E cells resulted in reduction of apparent affinities for Na(+) and K(+). Individual clones differed in gamma post-translational modification, however, and the effect on Na(+) affinity was absent in clones with full modification. Here, transfection of gamma(b) also resulted in clones with or without post-translational modification. Both groups showed a reduction in Na(+) affinity, but modification was required for the effect on K(+) affinity. There were minor increases in ATP affinity. The physiological importance of the reduction in Na(+) affinity was shown by the slower growth of gamma(a), gamma(b), and gamma(b') transfectants in culture. The differential influence of the four structural variants of gamma on affinities of the Na,K-ATPase for Na(+) and K(+), together with our previous finding of different distributions of gamma(a) and gamma(b) along the rat nephron, suggests a highly specific mode of regulation of sodium pump properties in kidney.  相似文献   

5.
The tetradecapeptide somatostatin (SRIF) has an inhibitory action on acid secretion in the stomach. It has been suggested that somatostatin may act directly on parietal cells as well as indirectly via histamine-producing cells. A family of high affinity membrane-bound receptors, which are termed sst1-sst5 receptors, mediates the physiological effects of somatostatin. On the basis of functional studies it has been suggested that somatostatin may mediate its actions in the stomach by activation of a somatostatin sst2 receptor type. Two splice variants of the rat sst2 receptor exist, sst2(a) and sst2(b), which differ in length and composition of their intracellular carboxy termini. To date, little information is available on the distribution of the somatostatin sst2(b) receptor in any peripheral tissue. Here we show for the first time the localisation of this receptor isoform in the rat oxyntic mucosa, where the receptor protein was found to be present in parietal cells. This is in contrast to sst2(a) receptor, which was localised to enterochromaffin-like cells and nerve fibres. The differential localisation of the receptor isoforms to two key cell types, parietal cells and enterochromaffin-like cells, may explain how somatostatin inhibits acid secretion by more than one mechanism.  相似文献   

6.
A GluR1-cGKII interaction regulates AMPA receptor trafficking   总被引:1,自引:0,他引:1  
Trafficking of AMPA receptors (AMPARs) is regulated by specific interactions of the subunit intracellular C-terminal domains (CTDs) with other proteins, but the mechanisms involved in this process are still unclear. We have found that the GluR1 CTD binds to cGMP-dependent protein kinase II (cGKII) adjacent to the kinase catalytic site. Binding of GluR1 is increased when cGKII is activated by cGMP. cGKII and GluR1 form a complex in the brain, and cGKII in this complex phosphorylates GluR1 at S845, a site also phosphorylated by PKA. Activation of cGKII by cGMP increases the surface expression of AMPARs at extrasynaptic sites. Inhibition of cGKII activity blocks the surface increase of GluR1 during chemLTP and reduces LTP in the hippocampal slice. This work identifies a pathway, downstream from the NMDA receptor (NMDAR) and nitric oxide (NO), which stimulates GluR1 accumulation in the plasma membrane and plays an important role in synaptic plasticity.  相似文献   

7.
Hayashi T  Rumbaugh G  Huganir RL 《Neuron》2005,47(5):709-723
Modification of AMPA receptor function is a major mechanism for the regulation of synaptic transmission and underlies several forms of synaptic plasticity. Post-translational palmitoylation is a reversible modification that regulates localization of many proteins. Here, we report that palmitoylation of the AMPA receptor regulates receptor trafficking. All AMPA receptor subunits are palmitoylated on two cysteine residues in their transmembrane domain (TMD) 2 and in their C-terminal region. Palmitoylation on TMD 2 is upregulated by the palmitoyl acyl transferase GODZ and leads to an accumulation of the receptor in the Golgi and a reduction of receptor surface expression. C-terminal palmitoylation decreases interaction of the AMPA receptor with the 4.1N protein and regulates AMPA- and NMDA-induced AMPA receptor internalization. Moreover, depalmitoylation of the receptor is regulated by activation of glutamate receptors. These data suggest that regulated palmitoylation of AMPA receptor subunits modulates receptor trafficking and may be important for synaptic plasticity.  相似文献   

8.
9.
Priel A  Selak S  Lerma J  Stern-Bach Y 《Neuron》2006,52(6):1037-1046
A prominent feature of ionotropic glutamate receptors from the AMPA and kainate subtypes is their profound desensitization in response to glutamate-a process thought to protect the neuron from overexcitation. In AMPA receptors, it is well established that desensitization results from rearrangements of the interface formed between agonist-binding domains of adjacent subunits; however, it is unclear how this mechanism applies to kainate receptors. Here we show that stabilization of the binding domain dimer by the generation of intermolecular disulfide bonds apparently blocked desensitization of the kainate receptor GluR6. This result establishes a common desensitization mechanism in both AMPA and kainate receptors. Surprisingly, however, surface expression of these nondesensitizing mutants was drastically reduced and did not depend on channel activity. Therefore, in addition to its role at the synapse, we now propose an intracellular role for desensitization in controlling maturation and trafficking of glutamate receptors.  相似文献   

10.

Background  

Large-conductance, calcium-activated potassium (Maxi-K) channels are implicated in the modulation of human uterine contractions and myometrial Ca2 + homeostasis. However, the regulatory mechanism(s) governing the expression of Maxi-K channels with decreased calcium sensitivity at parturition are unclear. The objectives of this study were to investigate mRNA expression of the Maxi-K alpha subunit, and that of its splice variants, in human non-pregnant and pregnant myometrium, prior to and after labour onset, to determine whether altered expression of these splice variants is associated with decreased calcium sensitivity observed at labour onset.  相似文献   

11.
Mayer ML 《Neuron》2005,45(4):539-552
Little is known about the molecular mechanisms underlying differences in the ligand binding properties of AMPA, kainate, and NMDA subtype glutamate receptors. Crystal structures of the GluR5 and GluR6 kainate receptor ligand binding cores in complexes with glutamate, 2S,4R-4-methylglutamate, kainate, and quisqualate have now been solved. The structures reveal that the ligand binding cavities are 40% (GluR5) and 16% (GluR6) larger than for GluR2. The binding of AMPA- and GluR5-selective agonists to GluR6 is prevented by steric occlusion, which also interferes with the high-affinity binding of 2S,4R-4-methylglutamate to AMPA receptors. Strikingly, the extent of domain closure produced by the GluR6 partial agonist kainate is only 3 degrees less than for glutamate and 11 degrees greater than for the GluR2 kainate complex. This, together with extensive interdomain contacts between domains 1 and 2 of GluR5 and GluR6, absent from AMPA receptors, likely contributes to the high stability of GluR5 and GluR6 kainate complexes.  相似文献   

12.
Survivin is an inhibitor of apoptosis protein (IAP) that is markedly overexpressed in most cancers. We identified two novel functionally divergent splice variants, i.e. non-antiapoptotic survivin-2B and antiapoptotic survivin-deltaEx3. Because survivin-2B might be a naturally occurring antagonist of antiapoptotic survivin variants, we analyzed the subcellular distribution of these proteins. PSORT II analysis predicted a preferential cytoplasmic localization of survivin and survivin-2B, but a preferential nuclear localization of survivin-deltaEx3. GFP-tagged survivin variants confirmed the predicted subcellular localization and additionally revealed a cell cycle-dependent nuclear accumulation of survivin-deltaEx3. Moreover, a bipartite nuclear localization signal found exclusively in survivin-deltaEx3 may support cytoplasmic clearance of survivin-deltaEx3. In contrast to the known association between survivin and microtubules or centromeres during mitosis, no corresponding co-localization became evident for survivin-deltaEx3 or survivin-2B. In conclusion, our study provided data on a differential subcellular localization of functionally divergent survivin variants, suggesting that survivin isoforms may perform different functions in distinct subcellular compartments and distinct phases of the cell cycle.  相似文献   

13.
Four novel splice variants of sulfonylurea receptor 1   总被引:2,自引:0,他引:2  
ATP-sensitiveK+ (KATP) channels are composed of pore-formingKir6.x subunits and regulatory sulfonylurea receptor (SUR) subunits. SURs are ATP-binding cassette proteins with two nucleotide-binding folds (NBFs) and binding sites for sulfonylureas, like glibenclamide, and for channel openers. Here we report the identification and functional characterization of four novel splice forms of guinea pigSUR1. Three splice forms originate from alternative splicing of theregion coding for NBF1 and lack exons 17 (SUR117), 19 (SUR119),or both (SUR11719). The fourth (SUR1C) is a COOH-terminal SUR1-fragment formed by exons 31-39 containing the last twotransmembrane segments and the COOH terminus of SUR1. RT-PCR analysisshowed that these splice forms are expressed in several tissues with strong expression of SUR1C in cardiomyocytes. Confocal microscopy usingenhanced green fluorescent protein-tagged SUR or Kir6.x did not provideany evidence for involvement of these splice forms in themitochondrial KATP channel. Only SUR1 and SUR117 showed high-affinity binding of glibenclamide (Kd 2 nM in the presence of 1 mM ATP) and formed functional KATPchannels upon coexpression with Kir6.2.

  相似文献   

14.
15.
16.
17.
The speed of synaptic vesicle recycling determines the efficacy of neurotransmission during repetitive stimulation. Synaptotagmins are synaptic C(2)-domain proteins that are involved in exocytosis, but have also been linked to endocytosis. We now demonstrate that upon expression in transfected neurons, a short splice variant of synaptotagmin 7 that lacks C(2)-domains accelerates endocytic recycling of synaptic vesicles, whereas a longer splice variant that contains C(2)-domains decelerates recycling. These results suggest that alternative splicing of synaptotagmin 7 acts as a molecular switch, which targets vesicles to fast and slow recycling pathways.  相似文献   

18.
19.
20.
Ischemic stroke, or a brain attack, is the third leading cause of death in developed countries. A critical feature of the disease is a highly selective pattern of neuronal loss; certain identifiable subsets of neurons--particularly CA1 pyramidal neurons in the hippocampus are severely damaged, whereas others remain intact. A key step in this selective neuronal injury is Ca2+/Zn2+ entry into vulnerable neurons through alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor channels, a principle subtype of glutamate receptors. AMPA receptor channels are assembled from glutamate receptor (GluR)1, -2, -3, and -4 subunits. Circumstance data have indicated that the GluR2 subunits dictate Ca2+/Zn2+ permeability of AMPA receptor channels and gate injurious Ca2+/Zn2+ signals in vulnerable neurons. Therefore, targeting to the AMPA receptor subunit GluR2 can be considered a practical strategy for stroke therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号