首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified several cDNAs for the human Kir5.1 subunit of inwardly rectifying K(+) channels. Alternative splicing of exon 3 and the usage of two alternative polyadenylation sites contribute to cDNA diversity. The hKir5.1 gene KCNJ16 is assigned to chromosomal region 17q23.1-24.2, and is separated by only 34 kb from the hKir2.1 gene (KCNJ2). In the brain, Kir5.1 mRNA is restricted to the evolutionary older parts of the hindbrain, midbrain and diencephalon and overlaps with Kir2.1 in the superior/inferior colliculus and the pontine region. In the kidney Kir5.1 and Kir2.1 are colocalized in the proximal tubule. When expressed in Xenopus oocytes, Kir5.1 is efficiently targeted to the cell surface and forms electrically silent channels together with Kir2.1, thus negatively controlling Kir2.1 channel activity in native cells.  相似文献   

2.
3.
SeSAME syndrome is a complex disease characterized by seizures, sensorineural deafness, ataxia, mental retardation and electrolyte imbalance. Mutations in the inwardly rectifying potassium channel Kir4.1 (KCNJ10 gene) have been linked to this condition. Kir4.1 channels are weakly rectifying channels expressed in glia, kidney, cochlea and possibly other tissues. We determined the electrophysiological properties of SeSAME mutant channels after expression in transfected mammalian cells. We found that a majority of mutations (R297C, C140R, R199X, T164I) resulted in complete loss of Kir4.1 channel function while two mutations (R65P and A167V) produced partial loss of function. All mutant channels were rescued upon co-transfection of wild-type Kir4.1 but not Kir5.1 channels. Cell-surface biotinylation assays indicate significant plasma membrane expression of all mutant channels with exception of the non-sense mutant R199X. These results indicate the differential loss of Kir channel function among SeSAME syndrome mutations.  相似文献   

4.
Adenosine triphosphate-sensitive K(++) (K(ATP)) channels are poorly characterized in the reproductive tract. The present study was designed to evaluate the putative expression of K(ATP) channel subunits (Kir6.x and SURx) in the epididymis from different mammalian species. Immunohistochemical, Western blot, and RT-PCR techniques were used. A positive immunostaining for Kir6.2 (KCNJ11) and SUR2 (ABCC9) was observed by immunoenzymatic and immunofluorescent approaches in the principal epithelial cells throughout all regions of the rat and mouse epididymis. Double labeling with anti-aquaporin 9 (AQP9) and anti-Kir6.2 (KCNJ11) confirmed their colocalization in the principal cells. No immunostaining could be demonstrated for Kir6.1 (KCNJ8) and SUR1 (ABCC8) subunits. Under higher magnification, the immunostaining for Kir6.2 (KCNJ11) exhibited a cytoplasmic labeling that was more intense at the level of the Golgi apparatus along the whole epididymis. A similar pattern was observed for SUR2 (ABCC9), although in the latter case, the Golgi labeling appeared to be region specific. Spermatozoa in epididymal tubules from rodents also immunostained for Kir6.2 (KCNJ11) and SUR2 (ABCC9). Western blot analysis of epididymal total protein and crude membrane extracts from adult and prepubertal rats confirmed the presence of Kir6.2 (KCNJ11). SUR2 (ABCC9) protein expression was detected in adult epididymal extracts. Furthermore, RT-PCR established the presence of Kir6.2 (KCNJ11) and SUR2 (ABCC9) mRNA in prepubertal and adult mouse epididymis. Indirect immunofluorescence also documented the presence of Kir6.2 (KCNJ11) and SUR2 (ABCC9) in the epididymal epithelium, as well as in spermatozoa, of canine, feline, bovine, and human origin. These data demonstrate the presence of the K(ATP) channel subunits, Kir6.2 (KCNJ11) and SUR2 (ABCC9), in epididymal epithelial cells and spermatozoa from several mammalian species. Although their physiological roles need to be fully characterized, it is tempting to propose that such types of K(++) channels might be involved in protein secretion and fluid-electrolyte transport occurring along the epididymal epithelium, leading to spermatozoa maturation.  相似文献   

5.
The loss of function of the basolateral K channels in the distal nephron causes electrolyte imbalance. The aim of this study is to examine the role of Src family protein tyrosine kinase (SFK) in regulating K channels in the basolateral membrane of the mouse initial distal convoluted tubule (DCT1). Single-channel recordings confirmed that the 40-picosiemen (pS) K channel was the only type of K channel in the basolateral membrane of DCT1. The suppression of SFK reversibly inhibited the basolateral 40-pS K channel activity in cell-attached patches and decreased the Ba2+-sensitive whole-cell K currents in DCT1. Inhibition of SFK also shifted the K reversal potential from −65 to −43 mV, suggesting a role of SFK in determining the membrane potential in DCT1. Western blot analysis showed that KCNJ10 (Kir4.1), a key component of the basolateral 40-pS K channel in DCT1, was a tyrosine-phosphorylated protein. LC/MS analysis further confirmed that SFK phosphorylated KCNJ10 at Tyr8 and Tyr9. The single-channel recording detected the activity of a 19-pS K channel in KCNJ10-transfected HEK293T cells and a 40-pS K channel in the cells transfected with KCNJ10+KCNJ16 (Kir.5.1) that form a heterotetramer in the basolateral membrane of the DCT. Mutation of Tyr9 did not alter the channel conductance of the homotetramer and heterotetramer. However, it decreased the whole-cell K currents, the probability of finding K channels, and surface expression of KCNJ10 in comparison to WT KCNJ10. We conclude that SFK stimulates the basolateral K channel activity in DCT1, at least partially, by phosphorylating Tyr9 on KCNJ10. We speculate that the modulation of tyrosine phosphorylation of KCNJ10 should play a role in regulating membrane transport function in DCT1.  相似文献   

6.
The inwardly rectifying K+ channels, Kir1.1, Kir2.3, Kir4.1-Kir5.1, and Kir4.2-Kir5.1, are candidate chemosensory molecules for CO2/H+. Here, we determined the mRNA expression and immunohistochemical localization of these channels in the carotid body (CB) and petrosal ganglion (PG) of the rat. RT-PCR analysis revealed mRNA expression of Kir4.1 and Kir5.1 in CB, and Kir1.1, Kir4.1, and Kir5.1 in PG. Immunohistochemistry identified the glomus cells in CB to express both Kir4.1 and Kir5.1 protein, while the nerve fibers in CB were immunoreactive for Kir1.1, Kir4.1, and Kir5.1. In the PG, immunoreactivity for Kir1.1, Kir4.1, and Kir5.1 was observed in some ganglion cells. Our findings suggest that Kir channels in the peripheral chemoreceptors play a role in sensing hypercapnic acidosis and maintaining the resting membrane potentials.  相似文献   

7.
The inwardly rectifying K+ channel subunit Kir5.1 is expressed abundantly in the brain, but its precise distribution and function are still largely unknown. Because Kir5.1 is co-expressed with Kir4.1 in retinal glial Muller cells, we have compared the biochemical and immunological properties of Kir5.1 and Kir4.1 in the mouse brain. Immunoprecipitation experiments suggested that brain expressed at least two subsets of Kir channels, heteromeric Kir4.1/5.1 and homomeric Kir4.1. Immunolabeling using specific antibodies showed that channels comprising Kir4.1 and Kir5.1 subunits were assembled in a region-specific fashion. Heteromeric Kir4.1/5.1 was identified in the neocortex and in the glomeruli of the olfactory bulb. Homomeric Kir4.1 was confined to the hippocampus and the thalamus. Homomeric Kir5.1 was not identified. Kir4.1/5.1 and Kir4.1 expression appeared to occur only in astrocytes, specifically in the membrane domains facing the pia mater and blood vessels or in the processes surrounding synapses. Both Kir4.1/5.1 and Kir4.1 could be associated with PDZ domain-containing syntrophins, which might be involved in the subcellular targeting of these astrocyte Kir channels. Because heteromeric Kir4.1/5.1 and homomeric Kir4.1 have distinct ion channel properties (Tanemoto, M., Kittaka, N., Inanobe, A., and Kurachi, Y. (2000) J. Physiol. (Lond.) 525, 587-592 and Tucker, S. J., Imbrici, P., Salvatore, L., D'Adamo, M. C., and Pessia, M. (2000) J. Biol. Chem. 275, 16404-16407), it is plausible that these channels play differential physiological roles in the K+ -buffering action of brain astrocytes in a region-specific manner.  相似文献   

8.
Andersen's syndrome is characterized by periodic paralysis, cardiac arrhythmias, and dysmorphic features. We have mapped an Andersen's locus to chromosome 17q23 near the inward rectifying potassium channel gene KCNJ2. A missense mutation in KCNJ2 (encoding D71V) was identified in the linked family. Eight additional mutations were identified in unrelated patients. Expression of two of these mutations in Xenopus oocytes revealed loss of function and a dominant negative effect in Kir2.1 current as assayed by voltage-clamp. We conclude that mutations in Kir2.1 cause Andersen's syndrome. These findings suggest that Kir2.1 plays an important role in developmental signaling in addition to its previously recognized function in controlling cell excitability in skeletal muscle and heart.  相似文献   

9.
Kir5.1 is an inwardly rectifying K+ channel subunit whose functional role has not been fully elucidated. Expression and distribution of Kir5.1 in retina were examined with a specific polyclonal antibody. Kir5.1 immunoreactivity was detected in glial Müller cells and in some retinal neurons. In the Kir5.1-positive neurons the expression of glutamic acid decarboxylase (GAD65) was detected, suggesting that they may be GABAergic-amacrine cells. In Müller cells, spots of Kir5.1 immunoreactivity distributed diffusely at the cell body and in the distal portions, where Kir4.1 immunoreactivity largely overlapped. In addition, Kir4.1 immunoreactivity without Kir5.1 was strongly concentrated at the endfoot of Müller cells facing the vitreous surface or in the processes surrounding vessels. The immunoprecipitant obtained from retina with anti-Kir4.1 antibody contained Kir5.1. These results suggest that heterotetrameric Kir4.1/Kir5.1 channels may exist in the cell body and distal portion of Müller cells, whereas homomeric Kir4.1 channels are clustered in the endfeet and surrounding vessels. It is possible that homomeric Kir4.1 and heteromeric Kir4.1/Kir5.1 channels play different functional roles in the K+-buffering action of Müller cells. inwardly rectifying potassium channel; heteromerization; glial Müller cells; amacrine cells; potassium siphoning  相似文献   

10.
Heteromultimerization of Kir4.1 and Kir5.1 leads to a channel with distinct functional properties. The heteromeric Kir4.1-Kir5.1 channel is expressed in the eye, kidney and brainstem and has CO(2)/pH sensitivity in the physiological range, suggesting a candidate molecule for the regulation of K(+) homeostasis and central CO(2) chemoreception. It is known that K(+) transport in renal epithelium and brainstem CO(2) chemosensitivity are subject to modulation by hormones and neurotransmitters that activate distinct intracellular signaling pathways. If the Kir4.1-Kir5.1 channel is involved in pH-dependent regulation of cellular functions, it may also be regulated by some of the intracellular signaling systems. Therefore, we undertook studies to determine whether PKC modulates the heteromeric Kir4.1-Kir5.1 channel. The channel expressed using a Kir4.1-Kir5.1 tandem dimer construct was inhibited by the PKC activator PMA in a dose-dependent manner. The channel inhibition was produced via reduction of the P(open). The effect of PMA was abolished by specific PKC inhibitors. In contrast, exposure of oocytes to forskolin (a PKA activator) had no significant effect on Kir4.1-Kir5.1 currents. The channel inhibition appeared to be independent of PIP(2) depletion and PKC-dependent internalization. Several consensus sequences of potential PKC phosphorylation sites were identified in the Kir4.1 and Kir5.1 subunits by sequence scan. Although the C-terminal peptides of both Kir4.1 and Kir5.1 were phosphorylated in vitro, site-directed mutagenesis of individual residues failed to reveal the PKC phosphorylation sites suggesting that the channel may have multiple phosphorylation sites. Taken together, these results suggest that the Kir4.1-Kir5.1 but not the homomeric Kir4.1 channel is strongly inhibited by PKC activation.  相似文献   

11.
Evaluation of candidate loci culminated in the identification of a heterozygous missense mutation (R67W) in KCNJ2, the gene encoding the inward-rectifying potassium current, Kir2.1, in 41 members of a kindred in which ventricular arrhythmias (13 of 16 female members [81%]) and periodic paralysis (10 of 25 male members [40%]) segregated as autosomal dominant traits with sex-specific variable expressivity. Some mutation carriers exhibited dysmorphic features, including hypertelorism, small mandible, syndactyly, clinodactyly, cleft palate, and scoliosis, which, together with cardiodysrhythmic periodic paralysis, have been termed "Andersen syndrome." However, no individual exhibited all manifestations of Andersen syndrome, and this diagnosis was not considered in the proband until other family members were examined. Other features seen in this kindred included unilateral dysplastic kidney and cardiovascular malformation (i.e., bicuspid aortic valve, bicuspid aortic valve with coarctation of the aorta, or valvular pulmonary stenosis), which have not been previously associated. Nonspecific electrocardiographic abnormalities were identified in some individuals, but none had a prolonged QT interval. Biophysical characterization of R67W demonstrated loss of function and a dominant-negative effect on Kir2.1 current. These findings support the suggestion that, in addition to its recognized role in function of cardiac and skeletal muscle, KCNJ2 plays an important role in developmental signaling.  相似文献   

12.
Heteromultimerization of Kir4.1 and Kir5.1 leads to a channel with distinct functional properties. The heteromeric Kir4.1-Kir5.1 channel is expressed in the eye, kidney and brainstem and has CO2/pH sensitivity in the physiological range, suggesting a candidate molecule for the regulation of K+ homeostasis and central CO2 chemoreception. It is known that K+ transport in renal epithelium and brainstem CO2 chemosensitivity are subject to modulation by hormones and neurotransmitters that activate distinct intracellular signaling pathways. If the Kir4.1-Kir5.1 channel is involved in pH-dependent regulation of cellular functions, it may also be regulated by some of the intracellular signaling systems. Therefore, we undertook studies to determine whether PKC modulates the heteromeric Kir4.1-Kir5.1 channel. The channel expressed using a Kir4.1-Kir5.1 tandem dimer construct was inhibited by the PKC activator PMA in a dose-dependent manner. The channel inhibition was produced via reduction of the Popen. The effect of PMA was abolished by specific PKC inhibitors. In contrast, exposure of oocytes to forskolin (a PKA activator) had no significant effect on Kir4.1-Kir5.1 currents. The channel inhibition appeared to be independent of PIP2 depletion and PKC-dependent internalization. Several consensus sequences of potential PKC phosphorylation sites were identified in the Kir4.1 and Kir5.1 subunits by sequence scan. Although the C-terminal peptides of both Kir4.1 and Kir5.1 were phosphorylated in vitro, site-directed mutagenesis of individual residues failed to reveal the PKC phosphorylation sites suggesting that the channel may have multiple phosphorylation sites. Taken together, these results suggest that the Kir4.1-Kir5.1 but not the homomeric Kir4.1 channel is strongly inhibited by PKC activation.  相似文献   

13.
Inwardly rectifying K+ channels (Kir) comprise seven subfamilies that can be subdivided further on the basis of cytosolic pH (pHi) sensitivity, rectification strength and kinetics, and resistance to run-down. Although distinct residues within each channel subunit define these properties, heteromeric association with other Kir subunits can modulate them. We identified such an effect in the wild-type forms of Kir4.2 and Kir5.1 and used this to further understand how the functional properties of Kir channels relate to their structures. Kir4.2 and a Kir4.2-Kir5.1 fusion protein were expressed in HEK293 cells. Inward currents from Kir4.2 were stable over 10 min and pHi-insensitive (pH 6 to 8). Conversely, currents from Kir4.2-Kir5.1 exhibited a pHi-sensitive run-down at slightly acidic pHi. At pHi 7.2, currents in response to voltage steps positive to EK were essentially time independent for Kir4.2 indicating rapid block by Mg2+. Coexpression with Kir5.1 significantly increased the blocking time constant, and increased steady-state outward current characteristic of weak rectifiers. Recovery from blockade at negative potentials was voltage dependent and 2 to 10 times slower in the homomeric channel. These results show that Kir5.1 converts Kir4.2 from a strong to a weak rectifier, rendering it sensitive to pHi, and suggesting that Kir5.1 plays a role in fine-tuning Kir4.2 activity.  相似文献   

14.
Snowflake vitreoretinal degeneration (SVD, MIM 193230) is a developmental and progressive hereditary eye disorder that affects multiple tissues within the eye. Diagnostic features of SVD include fibrillar degeneration of the vitreous humor, early-onset cataract, minute crystalline deposits in the neurosensory retina, and retinal detachment. A genome-wide scan previously localized the genetic locus for SVD to a 20 Mb region flanked by D2S2158 and D2S2202. This region contains 59 genes, of which 20 were sequenced, disclosing a heterozygous mutation (484C > T, R162W) in KCNJ13, member 13 of subfamily J of the potassium inwardly rectifying channel family in all affected individuals. The mutation in KCNJ13, the gene encoding Kir7.1, was not present in unaffected family members and 210 control individuals. Kir7.1 localized to human retina and retinal pigment epithelium and was especially prevalent in the internal limiting membrane adjacent to the vitreous body. Molecular modeling of this mutation predicted disruption of the structure of the potassium channel in the closed state located immediately adjacent to the cell-membrane inner boundary. Functionally, unlike wild-type Kir7.1 whose overexpression in CHO-K1 cells line produces highly selective potassium current, overexpression of R162W mutant Kir7.1 produces a nonselective cation current that depolarizes transfected cells and increases their fragility. These results indicate that the KCNJ13 R162W mutation can cause SVD and further show that vitreoretinal degeneration can arise through mutations in genes whose products are not structural components of the vitreous.  相似文献   

15.
Inwardly rectifying K+ channels (Kir) comprise seven subfamilies that can be subdivided further on the basis of cytosolic pH (pHi) sensitivity, rectification strength and kinetics, and resistance to run-down. Although distinct residues within each channel subunit define these properties, heteromeric association with other Kir subunits can modulate them. We identified such an effect in the wild-type forms of Kir4.2 and Kir5.1 and used this to further understand how the functional properties of Kir channels relate to their structures. Kir4.2 and a Kir4.2-Kir5.1 fusion protein were expressed in HEK293 cells. Inward currents from Kir4.2 were stable over 10 min and pHi-insensitive (pH 6 to 8). Conversely, currents from Kir4.2-Kir5.1 exhibited a pHi-sensitive run-down at slightly acidic pHi. At pHi 7.2, currents in response to voltage steps positive to EK were essentially time independent for Kir4.2 indicating rapid block by Mg2+. Coexpression with Kir5.1 significantly increased the blocking time constant, and increased steady-state outward current characteristic of weak rectifiers. Recovery from blockade at negative potentials was voltage dependent and 2 to 10 times slower in the homomeric channel. These results show that Kir5.1 converts Kir4.2 from a strong to a weak rectifier, rendering it sensitive to pHi, and suggesting that Kir5.1 plays a role in fine-tuning Kir4.2 activity.  相似文献   

16.
The inward rectifier K(+) channel Kir2.1 mediates the potassium I(K1) current in the heart. It is encoded by KCNJ2 gene that has been linked to Andersen's syndrome. Recently, strong evidences showed that Kir2.1 channels were associated with mouse atrial fibrillation (AF), therefore we hypothesized that KCNJ2 was associated with familial AF. Thirty Chinese AF kindreds were evaluated for mutations in KCNJ2 gene. A valine-to-isoleucine mutation at position 93 (V93I) of Kir2.1 was found in all affected members in one kindred. This valine and its flanking sequence is highly conserved in Kir2.1 proteins among different species. Functional analysis of the V93I mutant demonstrated a gain-of-function consequence on the Kir2.1 current. This effect is opposed to the loss-of-function effect of previously reported mutations in Andersen's syndrome. Kir2.1 V93I mutation may play a role in initiating and/or maintaining AF by increasing the activity of the inward rectifier K(+) channel.  相似文献   

17.
The physiological role of the inwardly rectifying potassium channel, Kir5.1, is poorly understood, as is the molecular identity of many renal potassium channels. In this study we have used Kir5.1-specific antibodies to reveal abundant expression of Kir5.1 in renal tubular epithelial cells, where Kir4.1 is also expressed. Moreover, we also show that Kir5.1/Kir4.1 heteromeric channel activity is extremely sensitive to inhibition by intracellular acidification and that this novel property is conferred predominantly by the Kir5.1 subunit. These findings suggest that Kir5.1/Kir4.1 heteromeric channels are likely to exist in vivo and implicate an important and novel functional role for the Kir5.1 subunit.  相似文献   

18.
In clinic, the patients with acute myocardial infarction (AMI) are at high risk to develop ischemia-induced ventricular arrhythmias leading to sudden cardiac death (SCD). Some studies suggest that individual susceptibility to ischemia-induced arrhythmia may be related to the genes encoding ion channels. One of them is the cardiac ATP-sensitive potassium channel (K(ATP)), which is an octamer composed of four pore-forming inwardly rectifying potassium-channel subunits (Kir6.2) and four regulatory sulfonylurea-receptor subunits (SUR2A). They play important roles in the physiology and pathophysiology of cardiovascular system by coupling the metabolic state of the cells to cellular electrical activity. So far, some mutations and polymorphisms of Kir6.2/KCNJ11 gene showed significant correlation with type 2 diabetes. But it was not sure whether it was associated with acute myocardial diseases. Hence a complete mutational analysis of Kir6.2/KCNJ11 gene was performed in a pedigree of sudden cardiac death. The complete coding region and the intron-exon boundaries of KCNJ11 were amplified from genomic DNA using polymerase chain reaction (PCR). Direct sequencing was done to identify any mutations and then further confirmed by restriction site polymorphism (RSP) approach. No mutation was detected in the samples analyzed, a common polymorphism K23E (A>G) was noticed in this pedigree and the proband showed a homozygote genotype (G/G). The result suggests that the Kir6.2/KCNJ11 gene is not related to sudden cardiac death in this family.  相似文献   

19.
Heteromultimerization between different potassium channel subunits can generate channels with novel functional properties and thus contributes to the rich functional diversity of this gene family. The inwardly rectifying potassium channel subunit Kir5.1 exhibits highly selective heteromultimerization with Kir4.1 to generate heteromeric Kir4.1/Kir5.1 channels with unique rectification and kinetic properties. These novel channels are also inhibited by intracellular pH within the physiological range and are thought to play a key role in linking K+ and H+ homeostasis by the kidney. However, the mechanisms that control heteromeric K+ channel assembly and the structural elements that generate their unique functional properties are poorly understood. In this study we identify residues at an intersubunit interface between the cytoplasmic domains of Kir5.1 and Kir4.1 that influence the novel rectification and gating properties of heteromeric Kir4.1/Kir5.1 channels and that also contribute to their pH sensitivity. Furthermore, this interaction presents a structural mechanism for the functional coupling of these properties and explains how specific heteromeric interactions can contribute to the novel functional properties observed in heteromeric Kir channels. The highly conserved nature of this structural association between Kir subunits also has implications for understanding the general mechanisms of Kir channel gating and their regulation by intracellular pH.  相似文献   

20.
The molecular identity of ion channels which confer PCO(2)/pH sensitivity in the brain is unclear. Heteromeric Kir4.1/Kir5.1 channels are highly sensitive to inhibition by intracellular pH and are widely expressed in several brainstem nuclei involved in cardiorespiratory control, including the locus coeruleus. This has therefore led to a proposed role for these channels in neuronal CO(2) chemosensitivity. To examine this, we generated mutant mice lacking the Kir5.1 (Kcnj16) gene. We show that although locus coeruleus neurons from Kcnj16((+/+)) mice rapidly respond to cytoplasmic alkalinization and acidification, those from Kcnj16((-/-)) mice display a dramatically reduced and delayed response. These results identify Kir5.1 as an important determinant of PCO(2)/pH sensitivity in locus coeruleus neurons and suggest that Kir5.1 may be involved in the response to hypercapnic acidosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号