首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graves JA  Henry SA 《Genetics》2000,154(4):1485-1495
The ino2Delta, ino4Delta, opi1Delta, and sin3Delta mutations all affect expression of INO1, a structural gene for inositol-1-phosphate synthase. These same mutations affect other genes of phospholipid biosynthesis that, like INO1, contain the repeated element UAS(INO) (consensus 5' CATGTGAAAT 3'). In this study, we evaluated the effects of these four mutations, singly and in all possible combinations, on growth and expression of INO1. All strains carrying an ino2Delta or ino4Delta mutation, or both, failed to grow in medium lacking inositol. However, when grown in liquid culture in medium containing limiting amounts of inositol, the opi1Delta ino4Delta strain exhibited a level of INO1 expression comparable to, or higher than, the wild-type strain growing under the same conditions. Furthermore, INO1 expression in the opi1Delta ino4Delta strain was repressed in cells grown in medium fully supplemented with both inositol and choline. Similar results were obtained using the opi1Delta ino2Delta ino4Delta strain. Regulation of INO1 was also observed in the absence of the SIN3 gene product. Therefore, while Opi1p, Sin3p, and the Ino2p/Ino4p complex all affect the overall level of INO1 expression in an antagonistic manner, they do not appear to be responsible for transmitting the signal that leads to repression of INO1 in response to inositol. Various models for Opi1p function were tested and no evidence for binding of Opi1p to UAS(INO), or to Ino2p or Ino4p, was obtained.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
The Saccharomyces cerevisiae PHO5 gene product accounts for a majority of the acid phosphatase activity. Its expression is induced by the basic helix-loop-helix (bHLH) protein, Pho4p, in response to phosphate depletion. Pho4p binds predominantly to two UAS elements (UASp1 at -356 and UASp2 at -247) in the PHO5 promoter. Previous studies from our lab have shown cross-regulation of different biological processes by bHLH proteins. This study tested the ability of all yeast bHLH proteins to regulate PHO5 expression and identified inositol-mediated regulation via the Ino2p/Ino4p bHLH proteins. Ino2p/Ino4p are known regulators of phospholipid biosynthetic genes. Genetic epistasis experiments showed that regulation by inositol required a third UAS site (UASp3 at -194). ChIP assays showed that Ino2p:Ino4p bind the PHO5 promoter and that this binding is dependent on Pho4p binding. These results demonstrate that phospholipid biosynthesis is co-ordinated with phosphate utilization via the bHLH proteins.  相似文献   

11.
12.
Opi1p is a negative regulator of expression of phospholipid-synthesizing enzymes in the yeast Saccharomyces cerevisiae. In this work, we examined the phosphorylation of Opi1p by protein kinase C. Using a purified maltose-binding protein-Opi1p fusion protein as a substrate, protein kinase C activity was time- and dose-dependent, and dependent on the concentrations of Opi1p and ATP. Protein kinase C phosphorylated Opi1p on a serine residue. The Opi1p synthetic peptide GVLKQSCRQK, which contained a protein kinase C sequence motif at Ser(26), was a substrate for protein kinase C. Phosphorylation of a purified S26A mutant maltose-binding protein-Opi1p fusion protein by the kinase was reduced when compared with the wild-type protein. A major phosphopeptide present in purified wild-type Opi1p was absent from the purified S26A mutant protein. In vivo labeling experiments showed that the phosphorylation of Opi1p was physiologically relevant, and that the extent of phosphorylation of the S26A mutant protein was reduced by 50% when compared with the wild-type protein. The physiological consequence of the phosphorylation of Opi1p at Ser(26) was examined by measuring the effect of the S26A mutation on the expression of the phospholipid synthesis gene INO1. The beta-galactosidase activity driven by an INO1-CYC-lacI'Z reporter gene in opi1Delta mutant cells expressing the S26A mutant Opi1p was about 50% lower than that of cells expressing the wild-type Opi1p protein. These data supported the conclusion that phosphorylation of Opi1p at Ser(26) mediated the attenuation of the negative regulatory function of Opi1p on the expression of the INO1 gene.  相似文献   

13.
Cardiolipin (CL) is a unique dimeric phospholipid localized primarily in the mitochondrial membrane. In eukaryotes, the enzyme CL synthase catalyses the synthesis of CL from two lipid substrates, CDP-diacylglycerol and phosphatidylglycerol. In earlier studies, we reported the purification of CL synthase from Saccharomyces cerevisiae and the cloning of the gene CRD1 (previously called CLS1 ) that encodes the enzyme. Because CL is an important component of the mitochondrial membrane, knowledge of its regulation will provide insight into the biogenesis of this organelle. To understand how CL synthesis is regulated, we analysed CRD1 expression by Northern blot analysis of RNA extracted from cells under a variety of growth conditions. CRD1 expression is regulated by mitochondrial development factors. CRD1 levels were 7- to 10-fold greater in stationary than in logarithmic growth phase, and threefold greater in wild-type than in ρ0 mutants. Expression was somewhat elevated during growth in glycerol/ethanol versus glucose media. In contrast, CRD1 expression was not regulated by the phospholipid precursors inositol and choline, and was not altered in the regulatory mutants ino2 , ino4 and opi1 . Mutations in cytochrome oxidase assembly, which led to reduced Crd1p enzyme activity, did not affect CRD1 expression. The crd1 null mutant makes a truncated CRD1 message. Although the null mutant can grow on both fermentable and non-fermentable carbon sources at lower temperatures, it cannot form colonies at 37°C. In conclusion, CRD1 expression is controlled by factors affecting mitochondrial development, but not by the phospholipid precursors inositol and choline. Expression of CRD1 is essential for growth at elevated temperatures, suggesting that either CL or Crd1p is required for an essential cellular function.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号