首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Recent observations have demonstrated the expression of several members of the homeobox-containing (HOX) gene complexes within the hematopoietic compartment. We have analyzed the expression pattern of the entire HOX 1 locus in a panel of leukemia-derived human cell lines representing various blood phenotypes. The expression of the eleven HOX 1 genes is lineage-restricted and these genes are predominantly detected within cells of myelomonocytic origin. This is in strong contrast with the erythro-megakaryocytic specific expression of HOX 2 genes. Furthermore, we have observed that the expression of three HOX 1 genes within B lymphoid lineages is stage-related and that the expression of several of them is switched off during TPA-induced differentiation of Kg1 and U937. These observations suggest that HOX 1 homeoproteins could be regulators of lineage determination during hematopoiesis.  相似文献   

2.
Although many of the factors responsible for conferring identity to the eye field in Drosophila have been identified, much less is known about how the expression of the retinal ;trigger', the signaling molecule Hedgehog, is controlled. Here, we show that the co-expression of the conserved odd-skipped family genes at the posterior margin of the eye field is required to activate hedgehog expression and thereby the onset of retinogenesis. The fly Wnt1 homologue wingless represses the odd-skipped genes drm and odd along the anterior margin and, in this manner, spatially restricts the extent of retinal differentiation within the eye field.  相似文献   

3.
The suicide plasmid pSUP2021 was used to introduce Tn5 into the Pseudomonas solanacearum wild-type strain K60. We isolated eight avirulent mutants after screening 6,000 kanamycin-resistant transconjugants by inoculating eggplant (Solanum melongena L. cv. Black Beauty) and tobacco (Nicotiana tabacum L. cv. Bottom Special) seedlings. The Tn5-containing EcoRI fragments from the eight mutants were unique, suggesting that numerous genes specify virulence in this species. These EcoRI fragments were cloned into pBR322 or pUC12, and one of the clones, pKD810, was transformed into K60. All of the kanamycin-resistant, ampicillin-sensitive transformants were avirulent. Three randomly selected avirulent transformants were shown to carry the Tn5-containing fragment in place of the wild-type fragment and to exhibit the same hybridization pattern as the original KD810 mutant did. With pKD810 as a probe, we identified cosmids carrying the wild-type virulence genes by using a genomic library of K60 prepared in pLAFR3. Two of the homologous cosmids, pL810A and pL810C, when introduced into KD810 by transformation, restored virulence and normal growth of this mutant in tobacco. Altogether, these data indicate that the gene(s) interrupted by Tn5 insertion in KD810 is essential for the virulence of P. solanacearum. Further characterization of this gene is now being completed by subcloning, transposon mutagenesis, and complementation analysis.  相似文献   

4.
In mammals, the female reproductive tract (FRT) develops from a pair of paramesonephric or Müllerian ducts (MDs), which arise from coelomic epithelial cells of mesodermal origin. During development, the MDs undergo a dynamic morphogenetic transformation from simple tubes consisting of homogeneous epithelium and surrounding mesenchyme into several distinct organs namely the oviduct, uterus, cervix and vagina. Following the formation of anatomically distinctive organs, the uniform MD epithelium (MDE) differentiates into diverse epithelial cell types with unique morphology and functions in each organ. Classic tissue recombination studies, in which the epithelium and mesenchyme isolated from the newborn mouse FRT were recombined, have established that the organ specific epithelial cell fate of MDE is dictated by the underlying mesenchyme. The tissue recombination studies have also demonstrated that there is a narrow developmental window for the epithelial cell fate determination in MD-derived organs. Accordingly, the developmental plasticity of epithelial cells is mostly lost in mature FRT. If the signaling that controls epithelial differentiation is disrupted at the critical developmental stage, the cell fate of MD-derived epithelial tissues will be permanently altered and can result in epithelial lesions in adult life. A disruption of signaling that maintains epithelial cell fate can also cause epithelial lesions in the FRT. In this review, the pathogenesis of cervical/vaginal adenoses and uterine squamous metaplasia is discussed as examples of such incidences.  相似文献   

5.
Regulation of progesterone receptor (PR) by estradiol-17beta (E(2)) in mouse uterine and vaginal epithelia was studied. In ovariectomized mice, PR expression was low in both vaginal stroma and epithelium, but high in uterine epithelium. E(2) induced PR in vaginal epithelium and stroma, but down-regulated PR in uterine epithelium. Analysis of estrogen receptor alpha (ERalpha) knockout (ERKO) mice showed that ERalpha is essential for E(2)-induced PR expression in both vaginal epithelium and stroma, and for E(2)-induced down-regulation, but not constitutive expression of PR in uterine epithelium. Regulation of PR by E(2) was studied in vaginal and uterine tissue recombinants made with epithelium and stroma from wild-type and ERKO mice. In the vaginal tissue recombinants, PR was induced by E(2) only in wild-type epithelium and/or stroma. Hence, in vagina, E(2) induces PR directly via ERalpha within the tissue. Conversely, E(2) down-regulated epithelial PR only in uterine tissue recombinants constructed with wild-type stroma. Therefore, down-regulation of uterine epithelial PR by E(2) requires stromal, but not epithelial, ERalpha. In vitro, isolated uterine epithelial cells retained a high PR level with or without E(2), which is consistent with an indirect regulation of uterine epithelial PR in vivo. Thus, E(2) down-regulates PR in uterine epithelium through paracrine mechanisms mediated by stromal ERalpha.  相似文献   

6.
7.
Although the basic functions of the prostate gland are conserved among mammals, its morphology varies greatly among species. Comparative studies between mouse and human are important because mice are widely used to study prostate cancer, a disease that occurs in a region-restricted manner within the human prostate. An informatics-based approach was used to identify prostate-specific human genes as candidate markers of region-specific identity that might distinguish prostatic ducts prone to prostate cancer from ducts that rarely give rise to cancer. Subsequent analysis of normal and cancerous human prostates demonstrated that the genes microseminoprotein-beta (MSMB) and transglutaminase 4 (TGM4) were expressed in distinct groups of ducts in the normal human prostate, and only MSMB was detected in areas of prostate cancer. The mouse orthologs of MSMB and TGM4 were then used for expression studies in mice along with the mouse ventrally expressed gene spermine binding protein (SBP). All three genes were informative markers of region-specific epithelial identity with distinct expression patterns that collectively accounted for all ducts in the mouse prostate. Together with the human data, this suggested that MSMB expression defines an anatomical domain in the mouse prostate that is molecularly most similar to human prostate cancers. Computer-assisted serial section reconstruction was used to visualize the complete expression domains for MSMB, SBP, and TGM4 in the mouse prostate. This showed that MSMB is expressed in prostatic ducts that comprise 21% of the mouse dorso-lateral prostate. Finally, the expression of MSMB, SBP, and TGM4 was evaluated in a mouse prostate cancer model created by the prostate epithelium-specific deletion of the tumor suppressor PTEN. MSMB and TGM4 were rapidly and dramatically down-regulated in response to PTEN deletion suggesting that this model of prostate cancer includes a more rapid de-differentiation of the prostatic epithelium than is observed in organ-confined human prostate cancers.  相似文献   

8.
Arterial identity of endothelial cells is controlled by local cues.   总被引:9,自引:0,他引:9  
The ephrins and their Eph receptors comprise the largest family of receptor tyrosine kinases. Studies on mice have revealed an important function of ephrin-B2 and Eph-B4 for the development of the arterial and venous vasculature, respectively, but the mechanisms regulating their expression have not been studied yet. We have cloned a chick ephrin-B2 cDNA probe. Expression was observed in endothelial cells of extra- and intraembryonic arteries and arterioles in all embryos studied from day 2 (stage 10 HH, before perfusion of the vessels) to day 16. Additionally, expression was found in the somites and neural tube in early stages, and later also in the smooth muscle cells of the aorta, parts of the Müllerian duct, dosal neural tube, and joints of the limbs. We isolated endothelial cells from the internal carotid artery and the vena cava of 14-day-old quail embryos and grafted them separately into day-3 chick embryos. Reincubation was performed until day 6 and the quail endothelial cells were identified with the QH1 antibody. The grafted arterial and venous endothelial cells expressed ephrin-B2 when they integrated into the lining of arteries. Cells that were not integrated into vessels, or into vessels other than arteries, were ephrin-B2-negative. The studies show that the expression of the arterial marker ephrin-B2 is controlled by local cues in arterial vessels of older embryos. Physical forces or the media smooth muscle cells may be involved in this process.  相似文献   

9.
The sex-determination genes of Drosophila act to repress the developmental pathway for the internal somatic reproductive organs of the opposite sex. By misregulating this pathway during preadult development, the organ-specific expression pattern of the glucose dehydrogenase gene (Gld) in the reproductive tract of adult flies has been changed without a concomitant sexual transformation of the reproductive organs. Misregulation of the tra, tra-2, and dsx genes leads to very similar patterns of ectopic expression of Gld. The induced ectopic patterns of Gld expression at the adult stage occur in a small subset of organs which all normally express the Gld gene during their morphogenesis. These ectopic patterns are irrevocably set during late larval-early pupal development. The normal pattern of Gld expression in several other Drosophila species is quite similar to the ectopic patterns which we have generated in D. melanogaster, suggesting that the interspecific variation in Gld expression may result from variation in the expression of the sex-determination genes.  相似文献   

10.
B7-H4 protein is expressed on the surface of a variety of immune cells and functions as a negative regulator of T cell responses. We independently identified B7-H4 (DD-O110) through a genomic effort to discover genes upregulated in tumors and here we describe a new functional role for B7-H4 protein in cancer. We show that B7-H4 mRNA and protein are overexpressed in human serous ovarian cancers and breast cancers with relatively little or no expression in normal tissues. B7-H4 protein is extensively glycosylated and displayed on the surface of tumor cells and we provide the first demonstration of a direct role for B7-H4 in promoting malignant transformation of epithelial cells. Overexpression of B7-H4 in a human ovarian cancer cell line with little endogenous B7-H4 expression increased tumor formation in SCID mice. Whereas overexpression of B7-H4 protected epithelial cells from anoikis, siRNA-mediated knockdown of B7-H4 mRNA and protein expression in a breast cancer cell line increased caspase activity and apoptosis. The restricted normal tissue distribution of B7-H4, its overexpression in a majority of breast and ovarian cancers and functional activity in transformation validate this cell surface protein as a new target for therapeutic intervention. A therapeutic antibody strategy aimed at B7-H4 could offer an exciting opportunity to inhibit the growth and progression of human ovarian and breast cancers.  相似文献   

11.
Highly fertile F1 hybrids were made between Triticum turgidum L. ssp. turgidum (2n = 28, AABB) and Aegilops tauschii Coss. (2n = 14, DD) without embryo rescue and hormone treatment. The F1 plants had an average seed set of 25%. Approximately 96% of the F2 seeds were able to germinate normally and about 67% of the F2 plants were spontaneous amphidiploid (2n = 42, AABBDD). Cytological analysis of male gametogenesis of the F1 plants showed that meiotic restitution is responsible for the high fertility. A mitosis-like meiosis led to meiotic restitution at either of the two meiotic divisions resulting in unreduced gametes. Test crosses of the T. t. turgidumAe. tauschii amphidiploid with Ae. variabilis and rye suggested that the mitosis-like meiosis is controlled by one or more nuclear genes that continue to function in derived lines. This discovery indicates a potential application of such genes in producing double haploids.  相似文献   

12.
In Drosophila, the Ultrabithorax, abdominal-A and Abdominal-B HOX genes of the bithorax complex determine the identity of part of the thorax and the whole abdomen. Either the absence of these genes or their ectopic expression transform segments into the identity of different ones along the antero-posterior axis. Here we show that misexpression of Ultrabithorax, abdominal-A and, to some extent, Abdominal-B genes cause similar transformations in some of the fruitfly appendages: antennal tissue into leg tissue and wing tissue into haltere tissue. abdominal-A can fully, and Abdominal-B partially, substitute for Ultrabithorax in haltere development. By contrast, when ectopically expressed, the three genes specify different segments in regions of the main body axis like notum or abdomen. Insects may have originally used the HOX genes primarily to specify this main body axis. By contrast, the homeotic requirement to form appendages is, in some cases, non-specific.  相似文献   

13.
目的:探讨卵巢癌中Vasohibin-1的表达情况及临床病理学意义。方法:采用实时定量PCR和免疫组化方法检测在60例上皮性卵巢癌和12例正常卵巢组织中Vasohibin-1的表达情况,ELISA法检测卵巢癌组织中VEGF蛋白表达,分析vasohibin-1表达与VEGF之间的关系及其与卵巢癌分期,分级和预后之间的关系。结果:卵巢癌中vasohibin-1表达明显高于正常卵巢(P0.05)。Vasohibin-1表达水平与卵巢癌分期相关(P0.05),而与卵巢癌分级和淋巴转移无关。Vasohibin-1表达与VEGF蛋白水平呈正相关(P0.01)。高vasohibin-1表达卵巢癌患者三年生存率(50%)低于低vasohibin-1表达的患者(83%)。结论:vasohibin-1可以反映卵巢癌的血管生成潜能,是卵巢癌的不良预后因素。  相似文献   

14.
D Duboule  P Dollé 《The EMBO journal》1989,8(5):1497-1505
This paper reports the cloning of the fourth major murine homeogene complex, HOX-5. The partial characterization of this gene cluster revealed the presence of two novel genes (Hox-5.2, Hox-5.3) located at the 5' extremity of this complex. In situ hybridization experiments showed that these two genes are transcribed in very posterior domains during embryonic and foetal development. We also show that Hox-1.6, the gene located at the 3' most position in the HOX-1 complex, has a very anterior expression boundary during early development. These results clearly support the recently proposed hypothesis that the expression of murine Antp-like homeobox-containing genes along the antero-posterior developing body axis follows a positional hierarchy which reflects their respective physical positions within the HOX clusters, similar to that which is found for the Drosophila homeotic genes. Such a structural and functional organization is likely conserved in most vertebrates. Moreover, on the basis of sequence comparisons, we propose that the ordering of homeobox-containing genes within clusters has been conserved between Drosophila and the house mouse. Thus, very different body plans might be achieved, both in insects and vertebrates, by evolutionarily conserved gene networks possibly displaying similar regulatory interactions.  相似文献   

15.
Monoclonal antibodies against the cell surface were produced by immunizing mice with endometrial scrapings prepared from 6-day pregnant rabbits. Spleen cells from an immune mouse were fused with myeloma cells and cultured by standard hybridoma technology methods. Hybridoma supernatants were screened for reaction with the apical epithelial surface by immunohistochemistry on frozen sections of uterus from 6-day pregnant rabbits, and positive colonies were cloned by limiting dilution. Ascites fluid was produced in mice from hybridoma clones that gave a consistent pattern of apical epithelial surface staining through 6 sub-clonings. Antibodies in the ascites fluid were tested by immunohistochemistry on frozen sections of uterus, oviduct, lung, liver and kidney from nonpregnant or 6-day pregnant rabbits. At a dilution of 1:5000, the antibodies recognized an antigen that was specific to the apical surface of luminal but not glandular epithelium of the 6-day pregnant uterus and could not be detected in the nonpregnant uterine epithelium. At higher concentrations of antibody (1:100 to 1:1000), crossreaction was seen with antigens in stromal and myometrial cells of pregnant and nonpregnant uterus. At a dilution of 1:5000, the antibody also crossreacted with some components of lung, liver and kidney but without discriminating between the two reproductive states. In the oviduct, staining of the surface epithelium was specific to the pregnant state. We conclude that this monoclonal antibody has a high affinity for a luminal epithelial cell surface antigen in the reproductive tract of the pregnant rabbit and shows multiple organ reactivity with other tissues that is not affected by pregnancy. This antigen will provide a useful cell surface marker of epithelial differentiation in the progestational reproductive tract.  相似文献   

16.
Flowering is a major developmental phase change that transforms the fate of the shoot apical meristem (SAM) from a leaf-bearing vegetative meristem to that of a flower-producing inflorescence meristem. In Arabidopsis, floral meristems are specified on the periphery of the inflorescence meristem by the combined activities of the FLOWERING LOCUS T (FT)–FD complex and the flower meristem identity gene, LEAFY ( LFY ). Two redundant functioning homeobox genes, PENNYWISE ( PNY ) and POUND-FOOLISH ( PNF ), which are expressed in the vegetative and inflorescence SAM, regulate patterning events during reproductive development, including floral specification. To determine the role of PNY and PNF in the floral specification network, we characterized the genetic relationship of these homeobox genes with LFY and FT . Results from this study demonstrate that LFY functions downstream of PNY and PNF. Ectopic expression of LFY promotes flower formation in pny pnf plants, while the flower specification activity of ectopic FT is severely attenuated. Genetic analysis shows that when mutations in pny and pnf genes are combined with lfy , a synergistic phenotype is displayed that significantly reduces floral specification and alters inflorescence patterning events. In conclusion, results from this study support a model in which PNY and PNF promote LFY expression during reproductive development. At the same time, the flower formation activity of FT is dependent upon the function of PNY and PNF.  相似文献   

17.
18.
The Arabidopsis floral homeotic gene AGAMOUS (AG) is a regulator of early flower development. The ag mutant phenotypes suggest that AG has two functions in flower development: (1) specifying the identity of stamens and carpels, and (2) controlling floral meristem determinacy. To dissect these two AG functions, we have generated transgenic Arabidopsis plants carrying an antisense AG construct. We found that all of the transgenic plants produced abnormal flowers, which can be classified into three types. Type I transgenic flowers are phenocopies of the ag-1 mutant flowers, with both floral meristem indeterminacy and floral organ conversion; type II flowers are indeterminate and have partial conversion of the reproductive organs; and type III flowers have normal stamens and carpels, but still have an indeterminate floral meristem inside the fourth whorl of fused carpels. The existence of type III flowers indicates that AG function can be perturbed to affect only floral meristem determinacy, but not floral organ identity. Furthermore, the fact that floral meristem determinacy is affected in all transformants, but floral organ identity only in a subset of them, suggests that the former may required a higher level of AG activity than the latter. This hypothesis is supported by the levels of AG'mRNA detected in different transformants with different frequencies of distinct types of abnormal antisense AG transgenic flowers. Finally, since AG inhibits the expression of another floral regulatory gene AP1, we examined AP1 expression in antisense AG flowers, and found that AP1 is expressed at a relatively high level in the center of type II flowers, but very little or below detectable levels in the inner whorls of type III flowers. These results provide further insights into the interaction of AG and AP1 and how such an interaction may control both organ identity and floral meristem determinacy.  相似文献   

19.
We aimed to discover cell line-specific overexpressed HOX genes responsible for chemoresistance and to identify the mechanisms behind HOX-induced cell line-specific chemoresistance in EOC. Ten HOX genes and eight EOC cell lines were tested for any cell line-specific overexpression that presents a mutually exclusive pattern. Cell viability was evaluated after treatment with cisplatin and/or siRNA for cell line-specific overexpressed HOX genes. Immunohistochemical (IHC) staining for HOXB9 was performed in 84 human EOC tissues. HOXA10 and HOXB9 were identified as cell line-specific overexpressed HOX genes for SKOV-3 and RMUG-S, respectively. Inhibiting the expression of cell line-specific HOX genes, but not of other HOX genes, significantly decreased cell viability. In SKOV-3 cells, cell viability decreased to 46.5% after initial 10 µM cisplatin treatment; however, there was no further decrease upon additional treatment with HOXA10 siRNA. In contrast, cell viability did not significantly decrease upon cisplatin treatment in RMUG-S cells, but decreased to 65.5% after additional treatment with HOXB9 siRNA. In both cell lines, inhibiting cell line-specific HOX expression enhanced apoptosis but suppressed the expression of epithelial-mesenchymal transition (EMT) markers such as vimentin, MMP9, and Oct4. IHC analysis showed that platinum-resistant cancer tissues more frequently had high HOXB9 expression than platinum-sensitive cancer tissues. HOXB9, which is overexpressed in RMUG-S but not in SKOV-3 cells, appeared to be associated with cell line-specific platinum resistance in RMUG-S. Inhibiting HOXB9 overexpression in RMUG-S cells may effectively eliminate platinum-resistant ovarian cancer cells by facilitating apoptosis and inhibiting EMT.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号