首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A definite and characteristic relationship exists between growth temperature, fatty acid composition and the fluidity and physical state of the membrane lipids in wild type Bacillus stearothermophilus. As the environmental temperature is increased, the proportion of saturated fatty acids found in the membrane lipids is also markedly increased with a concomitant decrease in the proportion of unsaturated and branched chain fatty acids. The temperature range over which the gel to liquid-crystalline membrane lipid phase transition occurs is thereby shifted such that the upper boundary of this transition always lies near (and usually below) the temperature of growth. This organism thus possesses an effective and sensitive homeoviscous adaptation mechanism which maintains a relatively constant degree of membrane lipid fluidity over a wide range of environmental temperatures. A mutant of B. stearothermophilus which has lost the ability to increase the proportion of relatively high melting fatty acids in the membrane lipids, and thereby increase the phase transition temperature in response to increases in environmental temperature, is also unable to grow at higher temperatures. An effective homeoviscous regulatory mechanism thus appears to extend the growth temperature range of the wild type organism and may be an essential feature of adaptation to temperature extremes. Over most of their growth temperature ranges the membrane lipids of wild type and temperature-sensitive B. stearothermophilus cells exist entirely or nearly entirely in the liquid-crystalline state. Also, the temperature-sensitive mutant is capable of growth at temperatures well above those at which the membrane lipid gel to liquid-crystalline phase transition is completed. Therefore, although other evidence suggests the existence of an upper limit on the degree of membrane fluidity compatible with cell growth, the phase transition is completed. Therefore, although other evidence suggests the existence of an upper limit on the degree of membrane fluidity compatible with cell growth, the phase transition upper boundary itself does not directly determine the maximum growth temperature of this organism. Similarly, the lower boundary does not determine the minimum growth temperature, since cell growth ceases at a temperature at which most of the membrane lipid still exists in a fluid state. These observations do not support the suggestion made in an earlier study, which utilized electron spin resonance spectroscopy to monitor membrane lipid lateral phase separations, that the minimum and maximum growth temperatures of this organism might directly be determined by the solid-fluid membrane lipid phase transition boundaries. Evidence is presented here that the electron spin resonance techniques used previously did not in fact detect the gel to liquid-crystalline phase transition of the bulk membrane lipids, which, however, can be reliably measured by differential thermal analysis.  相似文献   

2.
The physical state of the membrane lipids, as determined by fatty acid composition and environmental temperature, has a marked effect on both the temperature range within which Acholeplasma laidlawii B cells can grow and on growth rates within the permissible temperature ranges. The minimum growth temperature of 8 °C is not defined by the fatty acid composition of the membrane lipids when cells are enriched in fatty acids giving rise to gel to liquid-crystalline membrane lipid phase transitions occurring below this temperature. The elevated minimum growth temperatures of cells enriched in fatty acids giving rise to lipid phase transitions occurring at higher temperatures, however, are clearly defined by the fatty acid composition of the membrane lipids. The optimum and maximum growth temperatures are also influenced indirectly by the physical state of the membrane lipids, being significantly reduced for cells supplemented with lower melting, unsaturated fatty acids. The temperature coefficient of growth at temperatures near or above the midpoint of the lipid phase transition is 16 to 18 kcalmol, but this value increases abruptly to 40 to 45 kcalmol at temperatures below the phase transition midpoint. Both the absolute rates and temperature coefficients of cell growth are similar for cells whose membrane lipids exist entirely or predominantly in the liquid-crystalline state, but absolute growth rates decline rapidly and temperature coefficients increase at temperatures where more than half of the membrane lipids become solidified. Cell growth ceases when the conversion of the membrane lipid to the gel state approaches completion, but growth and replication can continue at temperatures where less than one tenth of the total lipid remains in the fluid state. An appreciable heterogeneity in the physical state of the membrane lipids can apparently be tolerated by this organism without a detectable loss of membrane function.  相似文献   

3.
A definite and characteristic relationship exists between growth temperature, fatty acid composition and the fluidity and physical state of the membrane lipids in wild type Bacillus stearothermophilus. As the environmental temperature is increased, the proportion of saturated fatty acids found in the membrane lipids is also markedly increased with a concomitant decrease in the proportion of unsaturated and branched chain fatty acids. The temperature range over which the gel to liquid-crystalline membrane lipid phase transition occurs is thereby shifted such that the upper boundary of this transition always lies near (and usually below) the temperature of growth. This organism thus possesses an effective and sensitive homeoviscous adaptation mechanism which maintains a relatively constant degree of membrane lipid fluidity over a wide range of environmental temperatures. A mutant of B. stearothermophilus which has lost the ability to increase the proportion of relatively high melting fatty acids in the membrane lipids, and thereby increase the phase transition temperature in response to increases in environmental temperature, is also unable to grow at higher temperatures. An effective homeoviscous regulatory mechanism thus appears to extend the growth temperature range of the wild type organism and may be an essential feature of adaptation to temperature extremes.Over most of their growth temperature ranges the membrane lipids of wild type and temperature-sensitive B. stearothermophilus cells exist entirely or nearly entirely in the liquid-crystalline state. Also, the temperature-sensitive mutant is capable of growth at temperatures well above those at which the membrane lipid gel to liquid-crystalline phase transition is completed. Therefore, although other evidence suggests the existence of an upper limit on the degree of membrane fluidity compatible with cell growth, the phase transition upper boundary itself does not directly determine the maximum growth temperature of this organism. Similarly, the lower boundary does not determine the minimum growth temperature, since cell growth ceases at a temperature at which most of the membrane lipid still exists in a fluid state. These observations do not support the suggestion made in an earlier study, which utilized electron spin resonance spectroscopy to monitor membrane lipid lateral phase separations, that the minimum and maximum growth temperatures of this organism might be directly determined by the solid-fluid membrane lipid phase transition boundaries. Evidence is presented here that the electron spin resonance techniques used previously did not in fact detect the gel to liquid-crystalline phase transition of the bulk membrane lipids, which, however, can be reliably measured by differential thermal analysis.  相似文献   

4.
V S Markin  M M Kozlov 《Biofizika》1983,28(6):1031-1035
Phase transition of lipid molecules between liquid and crystalline states in the vesicle membrane has a non-isothermal pattern; it is spread in some temperature range, which depends on the vesicle size. With a change of phase transition the area which falls within a lipid molecule is changed. As a result elastic tensions appear in the membrane. They may account for the non-isothermal pattern of phase transition. The number of molecules in each state is calculated in relation to temperature, and the temperature range is calculated within which the phase transition is realized. The smaller is the vesicle radius, the higher is the temperature range value. Temperature relationship of the membrane heat capacity at non-isothermal phase transition is calculated. The obtained results well agree with the number of experimental data.  相似文献   

5.
Wide-angle X-ray diffraction studies have indicated that rough and smooth microsomal membranes from bean cotyledons acquire increasing proportions of gel phase lipid at physiological temperature as the tissue senesces. In addition, for both types of membrane the lipid phase transition temperature, defined as the highest temperature at which gel phase lipid can be detected, progressively rises with advancing senescence. Liposomes prepared from total lipid extracts of the membranes show a similar increase in transition temperature with age, indicating that separation of the polar lipids into distinct gel and liquid-crystalline domains is not attributable to peculiar protein-lipid interactions. Liposomes prepared from purified phospholipid fractions of the membranes show little change in transition temperature with age, indicating that the altered phase properties of the lipid do not reflect an increase in fatty acid saturation. However, the formation of gel phase lipid that occurs naturally during senescence can be stimulated by preparing liposomes from a mixture of the phospholipid fraction from young membrane and the neutral lipid fraction from old membrane. By adding the separated components of the neutral lipid fraction to purified phospholipid it was found that sterol esters and several unidentified lipids are able to raise the transition temperature of the polar lipids. Sterols have no effect on the phospholipid transition temperature. The data have been interpreted as indicating that several neutral lipids, which presumably increase in abundance with advancing senescence, induce a lateral phase separation of the polar lipids resulting in distinct gel and liquid-crystalline domains of lipid in the senescent membranes.  相似文献   

6.
Scanning-fluctuation correlation spectroscopy was used to detect subresolution organizational fluctuations in the lipid liquid-crystalline phase for single lipid model systems. We used the fluorescent probe Laurdan which is sensitive to the amount of water in the membrane to show that there is a spatial heterogeneity on the scale of few pixels (the size of the pixel is 50 nm). We calculated the pixel variance of the GP function and we found that the variance has a peak at the phase transition for 3 different samples made of pure lipids. The pixel variance has an abrupt change at the phase transition of the membrane and then it slowly decreases at higher temperature. The relatively large variance of the GP indicates that the liquid phase of the membrane is quite heterogeneous even several degrees higher than the phase transition temperature. We interpreted this result as evidence of an underlying microscale structure of the membrane in which water is not uniformly distributed at the micron scale. Imaging of these microstructures shows that the pixels with different GP tend to concentrate in specific domains in the membrane. In the case of single lipid membrane, the statistical and fluctuation analysis of the GP data shows that even such simple lipid systems are capable of generating and maintaining stable structural and organizational heterogeneities.  相似文献   

7.
The mechanism of the lamellar/inverted cubic (QII) phase transition is related to that of membrane fusion in lipid systems. N-Monomethylated dioleoylphosphatidylethanolamine (DOPE-Me) exhibits this transition and is commonly used to investigate the effects of exogenous substances, such as viral fusion peptides, on the mechanism of membrane fusion. We studied DOPE-Me phase behavior as a first step in evaluating the effects of membrane-spanning peptides on inverted phase formation and membrane fusion. These measurements show that: a) the onset temperatures for QII and inverted hexagonal (HII) phase formation both are temperature scan rate-dependent; b) longer pre-incubation times at low temperature and lower temperature scan rates favor formation of the QII phase; and c) in temperature-jump experiments between 61 and 65°C, the meta-stable HII phase forms initially, and disappears slowly while the QII phase develops. These observations are rationalized in the context of a mechanism for both the lamellar/non-lamellar phase transition and the related process of membrane fusion. Current address for D.P.S.: Givaudan, Cincinnati, OH 45216 Data Deposition: Relevant transition temperatures in this paper have been deposited in the LIPIDAT ( )  相似文献   

8.
We investigated the thermotropic and barotropic bilayer phase behavior of 1-myristoyl-2-oleoyl-sn-glycero-3-phosphocholine (MOPC) and 1-oleoyl-2-myristoyl-sn-glycero-3-phosphocholine (OMPC) by means of the differential scanning calorimetry (DSC) and high-pressure light-transmittance technique. Water could be used as a solvent for measurements at high pressures because of the elevation of the transition temperatures above 0 degrees C by pressurization, whereas aqueous 50 wt.% ethylene glycol solution was used mainly for those at low pressures. Only one phase transition was observed in the DSC thermogram of the MOPC bilayer membrane as an endothermic peak, and also observed at high pressures as an abrupt change of the light-transmittance. The transition was assigned as a main transition between the lamellar gel (L(beta)) and liquid-crystalline (L(alpha)) phases on the basis of the values of enthalpy change (DeltaH) and slope of the transition temperature with respect to pressure (dT/dP). The DSC thermogram of the OMPC bilayer membrane similarly showed a single endothermic peak but two kinds of phase transitions were observed at different temperatures in the light-transmittance profile at high pressures. The extrapolation of the lower-temperature transition in the high-pressure range to an ambient pressure coincided with the transition observed in the DSC thermogram. This transition was identified as a transition between the lamellar crystal (L(c)) and L(alpha) (or L(beta)) phases from the DeltaH and dT/dP values. The higher-temperature transition, appearing only at high pressures, was identified as the L(beta)/L(alpha) transition considering the topological resemblance of its temperature-pressure phase diagram as that of the dioleoylphosphatidylcholine bilayer membrane. The phase diagram of the OMPC bilayer membrane demonstrated that the L(beta) phase cannot exist at pressures below ca. 190 MPa while it can exist stably in a finite temperature range at pressures above the pressure.  相似文献   

9.
The uptake of D-glucose by Acholeplasma laidlawii B occurs via a mediated transport process, as shown by the following observations: (i) glucose permeates A. laidlawii B cells at a rate at least 100 times greater than would be expected if its entry occurred only by simple passive diffusion; (ii) the apparent activation energy for glucose uptake in A. laidlawii is significantly lower than that expected and observed for the passive permeation of this sugar; (iii) glucose uptake appears to be a saturable process; (iv) glucose uptake can be completely inhibited by low concentrations of phloretin and phlorizin; and (v) glucose uptake is markedly inhibited at temperatures above 45 C, whereas the passive entry of erythritol continues to increase logarithmically until at least 60 C. The metabolism of D-glucose by this organism is rapid and, at low glucose concentrations, the intracellular radioactivity derived from D-[14-C]glucose is at any given time a reflection of the net effect of glucose transport, glucose metabolism, and loss from the cell of radioactive metabolic products. Care must thus be taken when attempting to determine the rate of glucose transport by measuring the accumulation by the cells of the total radioactivity derived from D-[14-C]glucose. The rate of uptake of D-glucose by A. laidlawii B cells is markedly dependent on the fatty acid composition and cholesterol content of the plasma membrane and exhibits a direct dependence on the fluidity of the membrane lipids as measured by their reversible, thermotropic gel to liquie-crystalline phase transition temperatures. In contrast to the transport rates, the apparent activation energy for glucose uptake above the phase transition temperature is not dependent on membrane lipid composition. At the temperature range within the membrane lipid phase transition region, the apparent activation energy of glucose uptake is different from the activation energy observed at temperatures above the phase transition. This may reflect the superimposed operation within the phase transition region of more than one temperature-dependent process.  相似文献   

10.
Changes in the physical state of microsomal membrane lipids during senescence of rose flower petals (Rosa hyb. L. cv Mercedes) were measured by x-ray diffraction analysis. During senescence of cut flowers held at 22°C, lipid in the ordered, gel phase appeared in the otherwise disordered, liquid-crystalline phase lipids of the membranes. This was due to an increase in the phase transition temperature of the lipids. The proportion of gel phase in the membrane lipids of 2-day-old flowers was estimated as about 20% at 22°C. Ethylene may be responsible, at least in part, for the increase in lipid transition temperature during senescence since aminooxyacetic acid and silver thiosulfate inhibited the rise in transition temperature. When flowers were stored at 3°C for 10 to 17 days and then transferrd to 22°C, gel phase lipid appeared in membranes earlier than in freshly cut flowers. This advanced senescence was the result of aging at 3°C, indicated by increases in membrane lipid transition temperature and ethylene production rate during the time at 3°C. It is concluded that changes in the physical state of membrane lipids are an integral part of senescence of rose petals, that they are caused, at least in part, by ethylene action and that they are responsible, at least in part, for the increase in membrane permeability which precedes flower death.  相似文献   

11.
BackgroundThe permeability of a lipid bilayer is a function of its phase state and depends non-linearly on thermodynamic variables such as temperature, pressure or pH. We investigated how shear forces influence the phase state of giant unilamellar vesicles and their membrane permeability.MethodsWe determined the permeability of giant unilamellar vesicles composed of different phospholipid species under shear flow in a tube at various temperatures around and far off the melting point by analyzing the release of fluorescently labelled dextran. Furthermore, we quantified phase state changes of these vesicles under shear forces using spectral decomposition of the membrane embedded fluorescent dye Laurdan.ResultsWe observed that the membrane permeability follows a step function with increasing permeability at the transition from the gel to the fluid phase and vice versa. Second, there was an all-or-nothing permeabilization near the main phase transition temperature and a gradual dye release far off the melting transition. Third, the Laurdan phase state analysis suggests that shear forces induce a reversible melting temperature shift in giant unilamellar vesicle membranes.Major conclusionsThe observed effects can be explained best in a scenario in which shear forces directly induce membrane pores that possess relatively long pore lifetimes in proximity to the phase transition.General significanceOur study elucidates the release mechanism of thermo-responsive drug carriers as we found that liposome permeabilization is not continuous but quantized. Furthermore, the shear force induced melting temperature shift must be taken into consideration when thermo-responsive liposomes are designed.  相似文献   

12.
The effect of free fatty acids on the phase transition characteristics and fluidity of bilayers of dimyristoyl glycerophosphocholine were studied by pyrene eximer fluorescence and differential scanning calorimetry. High melting saturated fatty acids with chain lengths of 12–18 carbon atoms raise the phase transition temperature and enhance the ability of pyrene to form clusters in the gel state while not affecting the fluidity of the membrane in the liquid crystal state. Low melting unsaturated fatty acids lower the phase transition temperature and decrease the ability of pyrene to form clusters in the gel state while not affecting the fluidity of the membrane in the liquid crystal state. The effects of the very long chain fatty acids, arachidic (C 20) and behenic (C 22) appear to be similar to those of cholesterol in that they cause a broadening of the phase transition with a lowering of the transition enthalpy but have little effect on the temperature at which the phase transition occurs.  相似文献   

13.
Fluorescein-PE is a fluorescence probe that is used as a membrane label or a sensor of surface associated processes. Fluorescein-PE fluorescence intensity depends not only on bulk pH, but also on the local electrostatic potential, which affects the local membrane interface proton concentration. The pH sensitivity and hydrophilic character of the fluorescein moiety was used to detect conformational changes at the lipid bilayer surface. When located in the dipalmitoylphosphatidylcholine (DPPC) bilayer, probe fluorescence depends on conformational changes that occur during phase transitions. Relative fluorescence intensity changes more at pretransition than at the main phase transition temperature, indicating that interface conformation affects the condition in the vicinity of the membrane. Local electrostatic potential depends on surface charge density, the local dielectric constant, salt concentration and water organisation. Initial increase in fluorescence intensity at temperatures preceding that of pretransition can be explained by the decreased value of the dielectric constant in the lipid polar headgroups region related in turn to decreased water organisation within the membrane interface. The abrupt decrease in fluorescence intensity at temperatures between 25 degrees C and 35 degrees C (DPPC pretransition) is likely to be caused by an increased value of the electrostatic potential, induced by an elevated value of the dielectric constant within the phosphate group region. Further increase in the fluorescence intensity at temperatures above that of the gel-liquid phase transition correlates with the calculated decreased surface electrostatic potential. Above the main phase transition temperature, fluorescence intensity increase at a salt concentration of 140 mM is larger than with 14 mM. This results from a sharp decline of the electrostatic potential induced by the phosphocholine dipole as a function of distance from the membrane surface.  相似文献   

14.
Manifestations of a cooperative interaction between ion-adsorbing sites in cells include steep, sigmoidal equilibrium adsorption isotherms of K+ and Na+, critical temperature transitions of net exchanges of Na+ for K+, and the allosteric nature of the effects of ligands on cellular K+ and Na+. Cooperative ionic adsorption is described by a one-dimensional Ising model. The experimentally-determined equilibrium parameters permit prediction of the kinetics of exchange of K+ for Na+ (the approach to equilibrium) by stochastic or hydrodynamic solutions of a time-dependent Ising model. Studies of the rates of self-exchange of adsorbed ions reveal properties of the cooperatively interacting adsorption sites and their dependence on temperature and chemical potential. High rates of isotopic exchanges of K+ and Na+ occur near the transition point. This is explained by the hypothesis of an increase in susceptibility of the ensemble to slight variations of microK or microNA near the phase transition, which leads to an increase in microscopic fluctuations within the ensemble. It is suggested that the isotopic ion exchange experiment may be a means to explore the microscopic states of the ensemble and their transition probabilities.  相似文献   

15.
Cellular membranes are one of the primary sites of injury during freezing and thawing for cryopreservation of cells. Fourier transform infrared spectroscopy (FTIR) was used to monitor membrane phase behavior and ice formation during freezing of stallion sperm. At high subzero ice nucleation temperatures which result in cellular dehydration, membranes undergo a profound transition to a highly ordered gel phase. By contrast, low subzero nucleation temperatures, that are likely to result in intracellular ice formation, leave membrane lipids in a relatively hydrated fluid state. The extent of freezing-induced membrane dehydration was found to be dependent on the ice nucleation temperature, and showed Arrhenius behavior. The presence of glycerol did not prevent the freezing-induced membrane phase transition, but membrane dehydration occurred more gradual and over a wider temperature range. We describe a method to determine membrane hydraulic permeability parameters (ELp, Lpg) at subzero temperatures from membrane phase behavior data. In order to do this, it was assumed that the measured freezing-induced shift in wavenumber position of the symmetric CH2 stretching band arising from the lipid acyl chains is proportional to cellular dehydration. Membrane permeability parameters were also determined by analyzing the H2O-bending and -libration combination band, which yielded higher values for both ELp and Lpg as compared to lipid band analysis. These differences likely reflect differences between transport of free and membrane-bound water. FTIR allows for direct assessment of membrane properties at subzero temperatures in intact cells. The derived biophysical membrane parameters are dependent on intrinsic cell properties as well as freezing extender composition.  相似文献   

16.
The binding of 1-anilino-8-naphthalenesulfonate (ANS) to dipalmitoyl-phosphatidycholine (DPPC)-sonicated vesicles was measured by a fluorimetric method in the vicinity of the gel-to-liquid crystalline phase transition temperature (Tm). A similar measurement was performed on large multimellar DPPC vesicles through equilibrium dialysis. Both measurements demonstrated anomalous dye binding in the temperature region of the Tm and slightly above (prefreezing region). The amount of ANS bound at this temperature region was in excess of what would be expected based on extrapolation of the high temperature binding data; just below the Tm, the amount of bound dye decreased abruptly. The fluorimetric studies on vesicles also indicated that inner monolayer binding of ANS was markedly inhibited below the Tm. The possibility that the increase in bound dye in the prefreezing region was caused by enhanced lateral compressibility, density fluctuations, or additional binding sites at the boundary of transient gel-like clusters is discussed and the general topic of anomalous increases in various membrane processes in the vicinity of a phase transition is briefly reviewed.  相似文献   

17.
Lipids in the plasma membrane of the general fatty acid auxotroph Butyrivibrio S2 pack as a bilayer that is characterized by a high order and high motional anisotropy and a low membrane fluidity compared to mammalian plasma membranes. Lipid packing as determined by the electron spin resonance (ESR) order parameter and membrane fluidity as measured by ESR correlation times are, however, comparable to those of other bacterial membranes. Membranes of the organism grown with saturated fatty acids of well-defined hydrocarbon chain length undergo a broad reversible endothermic phase transition, the peak temperature of which is well below the growth temperature; the end-point temperature of this thermal transition approximately coincides with the minimum temperature supporting significant growth of the organism. The lipid phase transition is also reflected in the temperature dependence of various ESR parameters, whereby the transition temperature thus derived is higher than the peak temperature of the endothermic transition but still lower than the growth temperature. ESR and calorimetry evidence taken together suggest that the endothermic transition is a gel to liquid-crystal transition and that, at the growth temperature, the plasma membrane of Butyrivibrio S2 is in the liquid-crystalline state. Similar values were measured for the order parameter of cell membranes of Butyrivibrio S2 regardless of whether the organism was grown on myristic, palmitic, or stearic acid. Butyrivibrio S2 has a mechanism enabling it to maintain membrane packing and fluidity at a fairly constant level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Changes in the thermal phase transition temperature of membrane lipids were studied by X-ray wide-angle diffraction during adaptation of Tetrahymena pyriformis to a lower growth temperature. After a shift in growth temperature from 39 to 15 degrees C, the phase transition temperature was lowered gradually in microsomal and pellicular phospholipids, whereas that in mitochondrial phospholipids was unchanged for 10 h after the temperature shift. Only a small decrease in the transition temperature of mitochondrial phospholipids was observed, even after 24 h following the shift. Transition temperatures of microsomal, pellicular and mitochondrial phospholipids reached the growth temperature (15 degrees C) about 6, 10 and 24 h after the temperature shift. The temperature dependence of the solid phase in membrane phospholipids was estimated from the 4.2 A peak of the X-ray diffraction pattern. In the case of the phospholipids extracted from cells grown at 39 degrees C, the solid phase was increased upon lowering temperature in a similar manner in all three membrane fractions: mitochondria, pellicles and microsomes. However, in the case of the phospholipids from cells exposed to a lower growth temperature (15 degrees C) for 10 h, the increase in the solid phase was significantly smaller in mitochondrial phospholipids than in two other membrane fractions. The difference in the thermal behaviour of mitochondrial lipid from pellicular and microsomal lipids is discussed in terms of phase transition and phase separation.  相似文献   

19.
The quenching efficiency of iodide as a penetrating fluorescence quencher for a membrane-associated fluorophore was utilized to measure the molecular packing of lipid bilayers. The KI quenching efficiency of tryptophan-fluorescence from melittin incorporated in DMPC bilayer vesicles peaks at the phase transition temperature (24 degrees C) of DMPC, whereas acrylamide quenching efficiency does not depend on temperature. The ability of iodide to penetrate the hydrocarbon region of the bilayer was examined by measuring the fluorescence quenching of the pyrene-phosphatidylcholine incorporated into DMPC vesicles (pyrene was attached to the 10th carbon of the sn-2 chain). The quenching efficiency of pyrene by iodide again shows a maximum at the lipid phase transition. We conclude that iodide penetrates the membrane hydrocarbon region at phase transition through an increased number of bilayer defects. The magnitude of change in quenching efficiency of iodide during lipid phase transition provides a sensitive technique to probe the lipid organization in membranes.  相似文献   

20.
The thermodynamic properties of fully-hydrated lipids provide important information about the stability of membranes and the energetic interactions of lipid bilayers with membrane proteins (Nagle and Scott, Physics Today, 2:39, 1978). The lamellar/inverse hexagonal (L(alpha)-H(II)) phase transition of 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) water mixtures is a first-order transition and, therefore, at constant pressure, must have a thermodynamically well-defined equilibrium transition temperature. The observed transition temperature is known to be dependent upon the rate at which the temperature is changed, which accounts for the many different values in the literature. X-ray diffraction was used to study the phase transition of fully-hydrated DOPE to determine the rate-independent transition temperature, T(LH). Samples were heated or cooled for a range of rates, 0.212 < r < 225 degrees C/hr, and the rate-dependent apparent phase transition temperatures, T(A)(r) were determined from the x-ray data. By use of a model-free extrapolation method, the transition temperature was found to be T(LH) = 3.33 +/- 0.16 degrees C. The hysteresis, /T(A)(r) - T(LH)/, was identical for heating and cooling rates, +/-r, and varied as /r/beta for beta approximately 1/4. This unexpected power-law relationship is consistent with a previous study (Tate et al., Biochemistry, 31:1081-1092, 1992) but differs markedly from the exponential behavior of activation barrier kinetics. The methods used in this study are general and provide a simple way to determine the true mesomorphic phase transition temperatures of other lipid and lyotropic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号