首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine heart submitochondrial particles (SMP) were exposed to continuous fluxes of hydroxyl radical (.OH) alone, superoxide anion radical (O2-) alone, or mixtures of .OH and O2-, by gamma radiolysis in the presence of 100% N2O (.OH exposure), 100% O2 + formate (O2- exposure), or 100% O2 alone (.OH + O2- exposure). Hydrogen peroxide effects were studied by addition of pure H2O2. NADH dehydrogenase, NADH oxidase, succinate dehydrogenase, succinate oxidase, and ATPase activities (Vmax) were rapidly inactivated by .OH (10% inactivation at 15-40 nmol of .OH/mg of SMP protein, 50-90% inactivation at 600 nmol of .OH/mg of SMP protein) and by .OH + O2- (10% inactivation at 20-80 nmol of .OH + O2-/mg of SMP protein, 45-75% inactivation at 600 nmol of .OH + O2-/mg of SMP protein). Importantly, O2- was a highly efficient inactivator of NADH dehydrogenase, NADH oxidase, and ATPase (10% inactivation at 20-50 nmol of O2-/mg of SMP protein, 40% inactivation at 600 nmol of O2-/mg of SMP protein), a mildly efficient inactivator of succinate dehydrogenase (10% inactivation at 150 nmol of O2-/mg of SMP protein, 30% inactivation at 600 nmol of O2-/mg of SMP protein), and a poor inactivator of succinate oxidase (less than 10% inactivation at 600 nmol of O2-/mg of SMP protein). H2O2 partially inactivated NADH dehydrogenase, NADH oxidase, and cytochrome oxidase, but even 10% loss of these activities required at least 500-600 nmol of H2O2/mg of SMP protein. Cytochrome oxidase activity (oxygen consumption supported by ascorbate + N,N,N',N'-tetramethyl-p-phenylenediamine) was remarkably resistant to oxidative inactivation, with less than 20% loss of activity evident even at .OH, O2-, OH + O2-, or H2O2 concentrations of 600 nmol/mg of SMP protein. Cytochrome c oxidase activity, however (oxidation of, added, ferrocytochrome c), exhibited more than a 40% inactivation at 600 nmol of .OH/mg of SMP protein. The .OH-dependent inactivations reported above were largely inhibitable by the .OH scavenger mannitol. In contrast, the O2(-)-dependent inactivations were inhibited by active superoxide dismutase, but not by denatured superoxide dismutase or catalase. Membrane lipid peroxidation was evident with .OH exposure but could be prevented by various lipid-soluble antioxidants which did not protect enzymatic activities at all.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Brad Chazotte  Garret Vanderkooi 《BBA》1981,636(2):153-161
Local anesthetics and alcohols were found to inhibit mitochondrial electron transport at several points along the chain. The anesthetics employed were the tertiary amines procaine, tetracaine, dibucaine, and chlorpromazine, and the alcohols were n-butanol, n-pentanol, n-hexanol, and benzyl alcohol. Uncoupled sonic submitochondrial particles from beef heart and rat liver were studied. We report the following: (1) All of the anesthetics were found to inhibit each of the segments of the electron transport chain assayed; these included cytochrome c oxidase, durohydroquinone oxidase, succinate oxidase, NADH oxidase, succinate dehydrogenase, succinate-cytochrome c oxidoreductase, and NADH-cytochrome c oxidoreductase. (2) NADH oxidase and NADH-cytochrome c oxidoreductase required the lowest concentrations of anesthetic for inhibition, and cytochrome c oxidase required the highest concentrations. (3) We conclude that there are several points along the chain at which inhibition occurs, the most sensitive being in the region of Complex I (NADH dehydrogenase). (4) Beef heart submitochondrial particles are less sensitive to inhibition than are rat liver particles. (5) Low concentrations of several of the anesthetics gave enhancement of electron transport activity, whereas higher concentrations of the same agents caused inhibition. (6) The concentrations of anesthetics (alcohol and tertiary amine) which gave 50% inhibition of NADH oxidase were lower than the reported concentrations required for blockage of frog sciatic nerve.  相似文献   

3.
Summary  Rubroskyrin, a modified bisanthraquinone pigment from an yellow rice moldPenicillium islandicum Sopp, was examined for its redox-interaction with the mitochondrial respiratory chain by using rat liver submitochondrial particles (SMP) and was compared with luteoskyrin and rugulosin. Rubroskyrin showed a redox interaction with the NAD-linked respiratory chain of SMP, promoting NADH oxidase in the presence of rotenone, a specific inhibitor to coupling site I of the respiratory chain. Rubroskyrin-mediated NADH oxidase was not inhibited by antimycin A and cyanide, inhibitors to coupling sites II and III, respectively, indicating a generation of an electron transport shunt from a rotenone-insensitive site of NADH dehydrogenase (complex I) to dissolved oxygen. An electrontransport shunt to cytochromec oxidase from complex I was also observed in the experiment with cytochromec and antimycin A. Rubroskyrin did not interact with succinate-linked respiratory chain. Such enzymatic redox response which generates electron transport shunt was not detected for luteoskyrin and rugulosin in the present study.  相似文献   

4.
5.
Submitochondrial particles (SMP) were produced from Jerusalem artichoke (Helianthus tuberosus L.) mitochondria by sonication and differential centrifugation. The SMP were about 50% inside-out as measured by the access of reduced cytochrome c to cytochrome c oxidase. Uncoupled NADH oxidation (1 mM NADH) by the SMP was 120 nmol O2 min?1mg?1, which was reduced to 98 nmol O2 min?1 (mg mitochondrial protein)?1 in the presence of EGTA. In contrast, the oxidation of NADH by intact mitochondria was completely inhibited by EGTA (from 182 to 14 nmol O2 min?1mg?1). The EGTA-resistant NADH oxidation by the SMP is ascribed to the NADH dehydrogenase(s) on the inside of the inner membrane and exposed to the medium in the inside-out SMP. In the presence of EGTA it could be shown that two NADH dehydrogenase activities were present in the SMP. One had an apparent Km of 7 μM for NADH, a Vmax of 80 nmol NADH min?1mg?1, and was rotenone-sensitive. This dehydrogenase is equivalent to the mammalian Complex I NADH dehydrogenase. The other dehydrogenase, which was rotenone-resistant, had a Km of 80 μM and a Vmax of 131 nmol NADH min?1mg?1; it is probably responsible for the rotenone-resistant oxidation of organic acids often observed in plant mitochondria. The redox poise of the pyridine nucleotides had only a small effect on the relative rates of the two internal dehydrogenases. Electron flow through these dehydrogenases appears, therefore, to be regulated mainly by the concentration of NADH in the matrix of the mitochondria.  相似文献   

6.
The antineoplastic benzanthroquinone drug doxorubicin can undergo flavoenzyme-catalyzed one-electron reduction which, in an aerobic environment, leads to the generation of oxygen-derived species. We therefore sought to determine whether doxorubicin in the presence of NADH dehydrogenase and the transition metal ions Fe(III) or Cu(II) induces DNA base modifications in isolated human chromatin. NADH dehydrogenase-catalyzed reduction of doxorubicin (25-100 microM) caused hydroxyl radical production detected as methane generated from dimethyl sulfoxide; addition of isolated human chromatin to the system produced a concentration-dependent quenching of detectable hydroxyl radical formation. Doxorubicin (5-50 microM)-stimulated enzyme-catalyzed oxidation of NADH was also diminished, but still detectable, in the presence of chromatin. Doxorubicin-induced DNA base modifications in chromatin were measured by gas chromatography/mass spectrometry with selected-ion monitoring. Production of modified bases required the addition of transition metal ion and was enhanced by the addition of active flavoenzyme. The non-redox cycling analogue 5-iminodaunorubicin induced significantly less base modification than did doxorubicin. In the presence of Fe(III), NADH dehydrogenase-catalyzed reduction of doxorubicin caused enhancement in the content of all modified bases over control levels. Substitution of Cu(II) for Fe(III) altered both the degree and the pattern of doxorubicin/NADH dehydrogenase-induced base modifications. The scavengers of hydroxyl radical mannitol and dimethyl sulfoxide or catalase did not significantly affect doxorubicin/NADH/NADH dehydrogenase/transition metal ion-induced base modifications. Superoxide dismutase further enhanced production of all base modifications. The data demonstrate that flavoenzyme-catalyzed redox cycling of doxorubicin generates typical hydroxyl radical-induced base modifications in the DNA of isolated human chromatin, suggesting a possible mechanism for the mutagenicity of doxorubicin in vivo.  相似文献   

7.
Cytochrome bd is a terminal quinol oxidase in Escherichia coli. Mitochondrial respiration is inhibited at cytochrome bc1 (complex III) by myxothiazol. Mixing purified cytochrome bd oxidase with myxothiazol-inhibited bovine heart submitochondrial particles (SMP) restores up to 50% of the original rotenone-sensitive NADH oxidase and succinate oxidase activities in the absence of exogenous ubiquinone analogs. Complex III bypassed respiration and is saturated at amounts of added cytochrome bd similar to that of other natural respiratory components in SMP. The cytochrome bd tightly binds to the mitochondrial membrane and operates as an intrinsic component of the chimeric respiratory chain.  相似文献   

8.
This study involves the effect of aluminium phosphide exposure on the kinetic characteristics of cytochrome oxidase and the mitochondrial respiratory chain function in rat brain. Mitochondrial preparations from both control and aluminium phosphide-treated rats demonstrated significant decrease in the maximal activity of cytochrome oxidase (approximately 50%) when expressed per unit membrane protein and on a turnover number basis (nmol/min/nmol haem a). The results indicated that there was a decrease in the catalytic efficiency of the active oxidase molecules on aluminium phosphide treatment. Arrhenius plot characteristics differ for cytochrome oxidase activity in mitochondria isolated from treated and control rats, in the break point of the biphasic plot which was shifted to a higher temperature. The decreased activity of cytochrome oxidase along with altered NADH and succinic dehydrogenase activities might have contributed towards a significant decline in state 3 and state 4 respiration. These alterations in the electron transport chain complexes in turn affected the ATP synthesis rate adversely in the mitochondria, isolated from treated rats. The data reflect the interaction of aluminium phosphide with redox chain components leading to the impairment of the electron transfer along the respiratory chain.  相似文献   

9.
L Escobar  E Escamilla 《Biochimie》1992,74(2):161-169
Bovine heart submitochondrial particles (SMP) were solubilized in an asolectin isooctane reverse micellar system and the functionality of the respiratory chain was tested by spectroscopic and amperometric techniques. Electron transfer rate supported by NADH was very slow as evidenced by the low cytochrome reduction levels attained over long incubation periods. In the presence of KCN, NADH caused 34% and 12.5% reduction of the cytochromes aa3 and c, respectively, and negligible reduction of cytochrome b. Supplementation of the system with menadione rose the NADH-dependent reduction of all the cytochromes to levels that were close to the total content. However, no measurable O2 uptake activity took place in the presence of NADH plus menadione, or with ascorbate (or NADH) plus TMPD reducing systems. Therefore, it is suggested that in the organic medium, electron transfer from NADH to O2 is arrested at the terminal oxidase step. Cytochrome oxidase reduced by ascorbate (or NADH) plus TMPD seems to be trapped in its half reduced state (ie, a2+ a3(3+)). Although it is poorly reactive with O2, it can transfer electrons back to cytochrome c and TMPD. The electron transfer block to O2 was overcome when PMS was used instead of TMPD. This seems to be due to the recognized capacity of PMSH2 to carry out simultaneous reduction of both a CuA and a3 CuB redox centers of cytochrome oxidase. The cytochrome oxidase reaction in the organic solvent was highly sensitive to KCN (Ki 1.9 microM) and showed bell-shaped kinetics towards the PMS concentration and a sigmoidal response to water concentration, reaching its maximal turnover number (18 s-1) at 4 mM PMS and 1.1% (v/v) water.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Cumulative doses of doxorubicin, a potent anticancer drug, lead to serious myocardial dysfunction. Numerous mechanisms including apoptosis have been proposed to account for its cardiotoxicity. Cardiac apoptosis induced by doxorubicin has been related to excessive reactive oxygen species production by the mitochondrial NADH dehydrogenase. Here, we explored whether doxorubicin treatment activates other superoxide anion generating systems such as the NADPH oxidases, membrane-embedded flavin-containing enzymes, and whether the subsequent oxidative stress contributes to apoptosis. We showed that doxorubicin treatment of rat cardiomyoblasts H9c2 triggers increases in caspase-3 like activity and hypoploid cells, both common features of apoptosis. Doxorubicin exposure also leads to a rapid superoxide production through NADPH oxidase activation. Inhibition of these enzymes using diphenyliodonium and apocynin reduces doxorubicin-induced reactive oxygen species production, caspase-3 like activity and sub-G1 cell population. In conclusion, NADPH oxidases participate to doxorubicin-induced cardiac apoptosis.  相似文献   

11.
Oxidation of exogenous NADH in mitochondria isolated from wild type and mi-1 mutant of Neurospora crassa decreases rapidly in vitro. In mi-1 mutant mitochondria the inactivation concerns the alternate pathway of oxidation whereas in the wild type it involves an unknown component of the respiratory chain. The activity of the primary NADH dehydrogenase is constant within the time of the experiments (2-4 h). NADH oxidase is not inactivated if oxygen is removed from the incubation medium by nitrogen bubbling. Succinate oxidase does not show any remarkable changes in activity within 2-3 h. In fresh mitochondria of the mi-1 mutant reduced ubiquinone is completely reoxidized by cytochrome oxidase but only 80% reoxidized by the alternate oxidase. In aged mitochondria of the mi-1 mutant in the presence of cyanide, ubiquinone is reduced to the level characteristic for fresh mitochondria in which respiration is completely inhibited by cyanide plus salicylhydroxamic acid. In these mitochondria the reoxidation of the reduced ubiquinone proceeds only via the cytochrome pathway. It is supposed that a labile component(s) of the respiratory chain present in the mi-1 mutant and the wild type mitochondria may, in mi-1 mutant, act as an alternate oxidase.  相似文献   

12.
The steady-state kinetics of the transhydrogenase reaction (the reduction of acetylpyridine adenine dinucleotide (APAD+) by NADH, DD transhydrogenase) catalyzed by bovine heart submitochondrial particles (SMP), purified Complex I, and by the soluble three-subunit NADH dehydrogenase (FP) were studied to assess a number of the Complex I-associated nucleotide-binding sites. Under the conditions where the proton-pumping transhydrogenase (EC 1.6.1.1) was not operating, the DD transhydrogenase activities of SMP and Complex I exhibited complex kinetic pattern: the double reciprocal plots of the velocities were not linear when the substrate concentrations were varied in a wide range. No binary complex (ping-pong) mechanism (as expected for a single substrate-binding site enzyme) was operating within any range of the variable substrates. ADP-ribose, a competitive inhibitor of NADH oxidase, was shown to compete more effectively with NADH (Ki = 40 microM) than with APAD+ (Ki = 150 microM) in the transhydrogenase reaction. FMN redox cycling-dependent, FP catalyzed DD transhydrogenase reaction was shown to proceed through a ternary complex mechanism. The results suggest that Complex I and the simplest catalytically competent fragment derived therefrom (FP) possess more than one nucleotide-binding sites operating in the transhydrogenase reaction.  相似文献   

13.
External NADH and succinate were oxidized at similar rates by soybean (Glycine max) cotyledon and leaf mitochondria when the cytochrome chain was operating, but the rate of NADH oxidation via the alternative oxidase was only half that of succinate. However, measurements of the redox poise of the endogenous quinone pool and reduction of added quinones revealed that external NADH reduced them to the same, or greater, extent than did succinate. A kinetic analysis of the relationship between alternative oxidase activity and the redox state of ubiquinone indicated that the degree of ubiquinone reduction during external NADH oxidation was sufficient to fully engage the alternative oxidase. Measurements of NADH oxidation in the presence of succinate showed that the two substrates competed for cytochrome chain activity but not for alternative oxidase activity. Both reduced Q-1 and duroquinone were readily oxidized by the cytochrome oxidase pathway but only slowly by the alternative oxidase pathway in soybean mitochondria. In mitochondria isolated from the thermogenic spadix of Philodendron selloum, on the other hand, quinol oxidation via the alternative oxidase was relatively rapid; in these mitochondria, external NADH was also oxidized readily by the alternative oxidase. Antibodies raised against alternative oxidase proteins from Sauromatum guttatum cross-reacted with proteins of similar molecular size from soybean mitochondria, indicating similarities between the two alternative oxidases. However, it appears that the organization of the respiratory chain in soybean is different, and we suggest that some segregation of electron transport chain components may exist in mitochondria from nonthermogenic plant tissues.  相似文献   

14.
Cytochrome c oxidase was found to be competitively inhibited by a complex formed between Fe3+ and the cardiotoxic antitumour drug adriamycin (doxorubicin) with an inhibition constant, Ki, of 12 microM. This competitive inhibition precedes the slower Fe3+-adriamycin induced inactivation of cytochrome c oxidase. In strong contrast with this result, free adriamycin was not observed to either inhibit or inactivate cytochrome c oxidase (Ki greater than 3 mM). Since, typically, polycations are known to inhibit cytochrome c oxidase, the competitive inhibition displayed by the Fe3+-adriamycin complex may also result from its polycationic character. Cytochrome c oxidase was also inhibited by pentan-1-ol (Ki 13 mM), and kinetic studies carried out in the presence of both inhibitors demonstrated that the Fe3+-adriamycin complex and pentan-1-ol are mutually exclusive inhibitors of cytochrome c oxidase. The inhibitor pentan-1-ol was also effective in preventing the slow inactivation of cytochrome c oxidase induced by Fe3+-adriamycin, presumably by blocking its binding to the enzyme. It is postulated that the slow inactivation of cytochrome c oxidase occurs when reactive radical species are produced while the Fe3+-adriamycin is complexed to cytochrome c oxidase in an enzyme-inhibitor complex. The Fe3+-adriamycin-induced inactivation of cytochrome c oxidase may be, in part, responsible for the cardiotoxicity of adriamycin.  相似文献   

15.
A yeast strain (SP1) resistant to glucose repression modified simultaneously in the fermentative and in the oxidative pathways (loss of alcohol dehydrogenase I and over production of cytochrome a + a3, being insensitive to the glucose effect) developed a secondary mitochondrial hydrogen pathway. Oxidative phosphorylation was measured with exogenous NADH as substrate on mitochondria derived from repressed or derepressed cells. In this strain, antimycin A promotes a partial inhibition of NADH oxidation but a complete inhibition of phosphorylation. Amytal partially inhibits oxidation of NADH but not phosphorylation. KCN inhibits NADH oxidation in a biphasic way (first level 0.1 mM, second level 5 mM) but phosphorylation was fully inhibited by 0.1 mM KCN. This alternative but non-phosphorylating pathway is insensitive to salicyl hydroxamate. The external NADH dehydrogenase, like cytochrome c oxidase is partially insensitive to catabolite repression. These results provide evidence for the presence in strain SP1 of an alternative mitochondrial pathway, going from the external NADH dehydrogenase to an oxidase, different from the normal NADH dehydrogenase ubiquinone pathway.  相似文献   

16.
It is suggested that the recently developed benzothiazole and amoscanate derivatives with antifilarial activity exert their action in vitro by an inhibition of mitochondrial-derived respiration. It was confirmed that the drugs CGP 20376, 21835, 20308, 21306, and 6140 cause a rapid immobilization in vitro of the adult filarial worm, Litomosoides carinii, the time required being similar to rotenone at the same concentration. The other drugs investigated, CGPs 20309, 21833, 24589, 23518, and 13231, were also effective; however, they required much longer incubation times. Submitochondrial particles (SMP) were prepared from Ascaris muscle and rat liver. The concentration of drug causing 50% inhibition of respiration (IC50) was calculated. It was found that the drugs most rapidly inhibiting respiration have IC50s for NADH oxidase of less than 25 microM in both Ascaris and rat liver SMP. This effect on SMP respiration could be overcome by using succinate as a substrate, indicating the site of inhibition to be within complex I of the mitochondrial respiratory chain. Further experiments showed that whereas the respiratory chain's NADH:ferricyanide reductase was unaffected by these drugs, there were pronounced effects on both Ascaris and rat liver NADH:quinone reductase activity. This suggests that the inhibition within complex I occurs after the flavoprotein dehydrogenase, but before the site of the quinone reduction. The other compounds examined, which had a slower effect on motility, also showed inhibition of the NADH oxidase, but not to as great an extent as the aforementioned compounds. The compounds most active against motility were also most effective at inhibiting respiration in intact adult L. carinii. Analysis of the aerobic end products produced by L. carinii showed that acetate production was greatly reduced even in the presence of low concentrations of the drugs. There was also a slight decrease in lactate production. However, a direct effect on the glycolytic pathway was ruled out by two observations. One, that the production of lactate from cell-free extracts of L. carinii is unaffected by the presence of the drugs, and secondly, that a protozoan, Giardia lamblia, reliant on glycolysis for energy production, can survive for long periods of time in the presence of high concentrations of the drugs. A correlation can be observed between the time for immobilization of the filarial worm and the strength of inhibition of mitochondrial respiration. Therefore, it is suggested that, at least in vitro, the mechanism of toxicity of these antifilarials in L. carinii is due to the blocking of the respiratory chain at a site similar to that of rotenone.  相似文献   

17.
Corynebacterium glutamicum is an aerobic bacterium that requires oxygen as exogenous electron acceptor for respiration. Recent molecular and biochemical analyses together with information obtained from the genome sequence showed that C. glutamicum possesses a branched electron transport chain to oxygen with some remarkable features. Reducing equivalents obtained by the oxidation of various substrates are transferred to menaquinone via at least eight different dehydrogenases, i.e. NADH dehydrogenase, succinate dehydrogenase, malate:quinone oxidoreductase, pyruvate:quinone oxidoreductase, D-lactate dehydrogenase, L-lactate dehydrogenase, glycerol-3-phosphate dehydrogenase and L-proline dehydrogenase. All these enzymes contain a flavin cofactor and, except succinate dehydrogenase, are single subunit peripheral membrane proteins located inside the cell. From menaquinol, the electrons are passed either via the cytochrome bc(1) complex to the aa(3)-type cytochrome c oxidase with low oxygen affinity, or to the cytochrome bd-type menaquinol oxidase with high oxygen affinity. The former branch is exceptional, in that it does not involve a separate cytochrome c for electron transfer from cytochrome c(1) to the Cu(A) center in subunit II of cytochrome aa(3). Rather, cytochrome c(1) contains two covalently bound heme groups, one of which presumably takes over the function of a separate cytochrome c. The bc(1) complex and cytochrome aa(3) oxidase form a supercomplex in C. glutamicum. The phenotype of defined mutants revealed that the bc(1)-aa(3) branch, but not the bd branch, is of major importance for aerobic growth in minimal medium. Changes of the efficiency of oxidative phosphorylation caused by qualitative changes of the respiratory chain or by a defective F(1)F(0)-ATP synthase were found to have strong effects on metabolism and amino acid production. Therefore, the system of oxidative phosphorylation represents an attractive target for improving amino acid productivity of C. glutamicum by metabolic engineering.  相似文献   

18.
Gliotoxin from Aspergillus, bearing a S&bond;S bond in its structure, prevented the onset of O(-)(2) generation by the human neutrophil NADPH oxidase in response to phorbol myristate acetate (PMA). Gliotoxin affected the activation process harder than the activated oxidase, as shown by its stronger inhibition when added to neutrophils prior to, than post-PMA at maximum enzyme turnover. Decreased O(-)(2) generation persisted even if cells treated with gliotoxin were subsequently washed, with half-inhibition concentrations (IC(50)) of 5.3, and 3.5 microM for treatments of 15 and 30 min, respectively. In addition, gliotoxin made neutrophils reduce cytochrome c regardless of absence of PMA, through its reaction with intracellular reductants in an oxygen-dependent process, named redox cycling. Thus, we next tested whether preincubation of neutrophils with gliotoxin under hypoxic conditions would relieve the inhibition of NADPH oxidase. Instead, this prevention of redox cycling significantly favored damage to the NADPH oxidase with an IC(50) of 0.009 microM. Moreover, conversion of gliotoxin to its dithiol derivative by addition of reduced dithiothreitol during incubation protected cells from losing oxidase activity. These findings support that the disulfide form of gliotoxin targets NADPH oxidase activation.  相似文献   

19.
20.
Disruption of mitochondria and free radical mediated tissue injury have been reported during cardiotoxicity induced by isoproterenol (ISO), a beta-adrenergic catecholamine. The present study was designed to investigate the effect of the combination of ferulic acid (FA) and ascorbic acid (AA) on the mitochondrial damage in ISO induced cardiotoxicity. Induction of rats with ISO (150 mg/kg b.wt., i.p.) for 2 days resulted in a significant decrease in the activities of respiratory chain enzymes (NADH dehydrogenase and cytochrome c-oxidase), tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, alpha-ketoglutarate dehydrogenase), mitochondrial antioxidants (GPx, GST, SOD, CAT, GSH), cytochromes (b, c, c1, aa3) and in the level of mitochondrial phospholipids. A marked elevation in mitochondrial lipid peroxidation, mitochondrial levels of cholesterol, triglycerides and free fatty acids were also observed in ISO intoxicated rats. Pre-co-treatment with the combination of FA (20 mg/kg b.wt.) and AA (80 mg/kg b.wt.) orally for 6 days significantly enhanced the attenuation of these functional abnormalities and restored normal mitochondrial function when compared to individual drug treated groups. Mitigation of ISO induced biochemical and morphological changes in mitochondria were more pronounced with a combination of FA and AA rather than the individual drug treated groups. Transmission electron microscopic observations also correlated with these biochemical parameters. Hence, these findings demonstrate the synergistic ameliorative potential of FA and AA on mitochondrial function during beta-adrenergic catecholamine induced cardiotoxicity and associated oxidative stress in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号