首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multifunctional Ca(2+)-calmodulin-dependent protein kinase (CaMKII) is a Ser/Thr protein kinase uniformly distributed within the sarcoplasmic reticulum (SR) of skeletal muscle. In fast twitch muscle, no specific substrates of CaMKII have yet been identified in nonjunctional SR. Previous electron microscopy data showed that glycogen particles containing glycogen synthase (GS) associate with SR at the I band level. Furthermore, recent evidence implicates CaMKII in regulation of glucose and glycogen metabolism. Here, we demonstrate that the glycogen- and protein phosphatase 1-targeting subunit, also known as G(M), selectively localizes to the SR membranes of rabbit skeletal muscle and that G(M) and GS co-localize at the level of the I band. We further show that G(M), GS, and PP1c assemble in a structural complex that selectively localizes to nonjunctional SR and that G(M) is phosphorylated by SR-bound CaMKII and dephosphorylated by PP1c. On the other hand, no evidence for a structural interaction between G(M) and CaMKII was obtained. Using His-tagged G(M) recombinant fragments and site-directed mutagenesis, we demonstrate that the target of CaMKII is Ser(48). Taken together, these data suggest that SR-bound CaMKII participates in the regulation of GS activity through changes in the phosphorylation state of G(M). Based on these findings, we propose that SR-bound CaMKII participates in the regulation of glycogen metabolism, under physiological conditions involving repetitive raises elevations of [Ca(2+)](i).  相似文献   

2.
The protein phosphatases which dephosphorylate native, sarcoplasmic reticulum (SR)-associated phospholamban were studied in cardiac muscle extracts and in a Triton fraction prepared by detergent extraction of myofibrils, the latter fraction containing 70-80% of the SR-associated proteins present in the tissue. At physiological concentrations of free Mg2+ (1 mM), protein phosphatase 1 (PP1) accounted for approximately 70% of the total phospholamban phosphatase activity in these fractions towards either Ser-16 (the residue labelled by cAMP-dependent protein kinase, PK-A) or Thr-17 (the residue phosphorylated by an SR-associated Ca2+/calmodulin-dependent protein kinase). Protein phosphatase 2A (PP2A) and protein phosphatase 2C (PP2C) accounted for the remainder of the activity. A major form of cardiac PP1, present in comparable amounts in both the extract and Triton fraction, was similar, if not identical, to skeletal muscle protein phosphatase 1G (PP1G), which is composed of the PP1 catalytic (C) subunit complexed to a G subunit of approximately 160 kDa, responsible for targeting PP1 to both the SR and glycogen particles of skeletal muscle. This conclusion was based on immunoblotting experiments using antibody to the G subunit, ability to bind to glycogen and the release of PP1 activity from glycogen upon incubation with PK-A and MgATP. PP1 accounted for approximately 90% of the phospholamban (Ser-16 or Thr-17) phosphatase activity in the material sedimented by centrifugation at 45,000 x g, a fraction prepared from cardiac extracts which is enriched in SR membranes. The G subunit in this fraction could be solubilised by Triton X-100, but not with 0.5 M NaCl or digestion with alpha-amylase, indicating that it is bound to membranes and not to glycogen. By analogy with the situation in skeletal muscle, the PK-A catalysed phosphorylation of the G subunit, with ensuing release of the C subunit from the SR, may prevent PP1 from dephosphorylating SR-bound substrates and represent one of the mechanisms by which adrenalin increases the phosphorylation of cardiac phospholamban (Ser-16 and Thr-17) in vivo. Hearts left in situ post mortem lose 85-95% of their PP1 activity within 20-30 min. This remarkable disappearance of PP1 may partly explain why the importance of this enzyme in cardiac muscle metabolism has not been recognized previously.  相似文献   

3.
A Chu  C Sumbilla  G Inesi  S D Jay  K P Campbell 《Biochemistry》1990,29(25):5899-5905
A systematic study of protein kinase activity and phosphorylation of membrane proteins by ATP was carried out with vesicular fragments of longitudinal tubules (light SR) and junctional terminal cisternae (JTC) derived from skeletal muscle sarcoplasmic reticulum (SR). Following incubation of JTC with ATP, a 170,000-Da glycoprotein, a 97,500-Da protein (glycogen phosphorylase), and a 55,000-60,000-Da doublet (containing calmodulin-dependent protein kinase subunit) underwent phosphorylation. Addition of calmodulin in the presence of Ca2+ (with no added protein kinase) produced a 10-fold increase of phosphorylation involving numerous JTC proteins, including the large (approximately 450,000 Da) ryanodine receptor protein. Calmodulin-dependent phosphorylation of the ryanodine receptor protein was unambiguously demonstrated by Western blot analysis. The specificity of these findings was demonstrated by much lower levels of calmodulin-dependent phosphorylation in light SR as compared to JTC, and by much lower cyclic AMP dependent kinase activity in both JTC and light SR. These observations indicate that the purified JTC contain membrane-bound calmodulin-dependent protein kinase that undergoes autophosphorylation and catalyzes phosphorylation of various membrane proteins. Protein dephosphorylation was very slow in the absence of added phosphatases, but was accelerated by the addition of phosphatase 1 and 2A (catalytic subunit) in the absence of Ca2+, and calcineurin in the presence of Ca2+. Therefore, in the muscle fiber, dephosphorylation of SR proteins relies on cytoplasmic phosphatases. No significant effect of protein phosphorylation was detected on the Ca2(+)-induced Ca2+ release exhibited by isolated JTC vesicles. However, the selective and prominent association of calmodulin-dependent protein kinase and related substrates with junctional membranes, its Ca2+ sensitivity, and its close proximity to the ryanodine and dihydropyridine receptor Ca2+ channels suggest that this phosphorylation system is involved in regulation of functions linked to these structures.  相似文献   

4.
Highly purified fractions of sarcoplasmic reticulum (SR) were prepared from chicken pectoralis muscles (Saito, A., Seiler, S., Chu, A., and Fleischer, S. (1984) J. Cell Biol. 99, 875-885) and analyzed for the presence of creatine kinase (CK). Vesicles derived from longitudinal SR contained 0.703 +/- 0.428 IU of CK/mg of (SR) protein. Immunogold localization of muscle-type MM-CK on ultrathin cryosections of muscle, after removal of soluble CK, revealed relatively strong in situ labeling of M-CK remaining bound to the M band as well as to the SR membranes. In addition, purified SR vesicles were also labeled by anti-M-CK antibodies, and the peripheral labeling was similar to that observed with anti-Ca2(+)-ATPase antibodies. Only some particulate CK enzyme was released from isolated SR membranes by EDTA/low salt buffer, and CK was resistant to extraction by 0.6 M KCl. Thus, some of the MM-CK present in muscle displays strong associative behavior to the SR membranes. The SR-bound CK was sufficient to support, in the presence of phosphocreatine plus ADP, a significant portion of the maximal in vitro Ca2+ uptake rate. The ATP regeneration potential of SR-bound CK was similar to the rate of Ca2(+)-stimulated ATP hydrolysis of isolated SR vesicles. Thus, CK bound to SR may be physiologically relevant in vivo for regeneration of ATP used by the Ca2(+)-ATPase, as well as for regulation of local ATP/ADP ratios in the proximity of the Ca2+ pump and of other ATP-requiring reactions in the excitation-contraction coupling pathway.  相似文献   

5.
The mechanism responsible for the diminished activation of glycogen synthase (GS) in diabetic myotubes remains unclear, but may involve increased activity and/or expression of glycogen synthase kinase-3 (GSK-3). In myotubes established from type 2 diabetic and healthy control subjects we determined GS activity ratio, protein expression, and activity of GSK-3alpha and beta under basal and insulin-stimulated conditions when precultured in increasing insulin concentrations. In myotubes precultured at low insulin concentrations acute insulin stimulation increased GS activity more in control than in diabetic subjects, whereas the corresponding GSK-3alpha but not GSK-3beta activity was significantly reduced by acute insulin treatment in both groups. However, in myotubes precultured at high insulin concentrations the effect of insulin on GS and GSK-3alpha activity was blunted in both groups. The protein expression of GSK-3alpha or beta was unaffected. In conclusion, myotubes with a primary defect in GS activity express insulin responsive GSK-3alpha, suggesting that failure of insulin to decrease GS phosphorylation involves abnormal activity of another kinase or phosphatase.  相似文献   

6.
This paper describes the stimulation by cyclic nucleotide dependent protein kinases on the Ca2+ uptake by isolated endoplasmic reticulum (ER) vesicles from the bovine main pulmonary artery. This ER fraction has previously been shown to be highly enriched in phospholamban, a protein kinase substrate that has been well characterized in cardiac sarcoplasmic reticulum (SR), where its phosphorylation is accompanied by an increased rate of Ca2+ uptake. As previously observed for the phosphorylation of phospholamban, the stimulation of the rate of Ca uptake was as high with cGMP dependent protein kinase as with cAMP dependent protein kinase. The effect of phosphorylation of the ER membranes from smooth muscle on the Ca2+ uptake was smaller than that seen in cardiac SR, and it was only observed if albumin was included during the isolation of the membranes. This relatively small effect is probably not due to a lower ratio of phospholamban to Ca2(+)-transport enzyme in the ER membranes as compared to cardiac SR. Several alternative explanations are discussed.  相似文献   

7.
Diastolic heart failure (DHF) and systolic heart failure (SHF) are two clinical subsets of chronic heart failure (CHF). Sarcoplasmic reticulum (SR) Ca2+ leak has been measured in SHF and might contribute to contractile dysfunction and arrhythmogenesis. However, no study has investigated a similar phenomenon in DHF. Thus, we established DHF and SHF rabbit models and compared the differences in Ca2+ leak between these models. New Zealand white rabbits were randomly divided into three groups (n = 8 in each group): sham operation (SO) group, DHF group and SHF group. Cardiac functions were determined by echocardiography and hemodynamic assays. The SR Ca2+ leak was measured with a calcium-imaging device and the expression and activities of related proteins were evaluated with Western blots and autophosphorylation. In the DHF group, there was significantly increased ventricular wall thickness and stiffness, reduced diastolic function, and total amount of FK506 binding protein 12.6 (FKBP12.6), increased expression and activity of protein kinase A (PKA) and phosphorylation site (P2809) in the ryanodine receptor (RyR2), but no prominent Ca2+ leak. In the SHF group, there was significantly increased ventricular cavity size, reduced systolic function, increased SR Ca2+ leak, reduced total amount of FKBP12.6 and FKBP12.6-RyR2 association, increased expression and activity of PKA and Ca2+/calmodulin-dependent protein kinase II (CaMKII) and their RyR2 phosphorylation sites with unchanged P2030. Our results suggest that a prominent SR Ca2+ leak was not observed in the DHF model, which may provide a new idea for the reasons in preserved systolic function, and CaMKII possibly plays a more important role in SR Ca2+ leak.  相似文献   

8.
Transgenic (TG) mice expressing a Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitory peptide targeted to the cardiac myocyte longitudinal sarcoplasmic reticulum (LSR) display reduced phospholamban phosphorylation at Thr17 and develop dilated myopathy when stressed by gestation and parturition (Ji Y, Li B, Reed TD, Lorenz JN, Kaetzel MA, and Dedman JR. J Biol Chem 278: 25063-25071, 2003). In the present study, these animals (TG) are evaluated for the effect of inhibition of sarcoplasmic reticulum (SR) CaMKII activity on the contractile characteristics and Ca2+ cycling of myocytes. Analysis of isolated work-performing hearts demonstrated moderate decreases in the maximal rates of contraction and relaxation (+/-dP/dt) in TG mice. The response of the TG hearts to increases in load is reduced. The TG hearts respond to isoproterenol (Iso) in a dose-dependent manner; the contractile properties were reduced in parallel to wild-type hearts. Assessment of isolated cardiomyocytes from TG mice revealed 40-47% decrease in the maximal rates of myocyte shortening and relengthening under both basal and Iso-stimulated conditions. Although twitch Ca2+ transient amplitudes were not significantly altered, the rate of twitch intracellular Ca2+ concentration decline was reduced by approximately 47% in TG myocytes, indicating decreased SR Ca2+ uptake function. Caffeine-induced Ca2+ transients indicated unaltered SR Ca2+ content and Na+/Ca2+ exchange function. Phosphorylation assays revealed an approximately 30% decrease in the phosphorylation of ryanodine receptor Ser2809. Iso stimulation increased the phosphorylation of both phospholamban Ser16 and the ryanodine receptor Ser2809 but not phospholamban Thr17 in TG mice. This study demonstrates that inhibition of SR CaMKII activity at the LSR results in alterations in cardiac contractility and Ca2+ handling in TG hearts.  相似文献   

9.
Phospholamban (PLB) is a sarcoplasmic reticulum (SR) protein that when phosphorylated at Ser16 by PKA and/or at Thr17 by CaMKII increases the affinity of the SR Ca2+ pump for Ca2+. PLB is therefore, a critical regulator of SR function, myocardial relaxation and myocardial contractility. The present study was undertaken to examine the status of PLB phosphorylation after ischemia and reperfusion and to provide evidence about the possible role of the phosphorylation of Thr17 PLB residue on the recovery of contractility and relaxation after a period of ischemia. Experiments were performed in Langendorff perfused hearts from Wistar rats. Hearts were submitted to a protocol of global normothermic ischemia and reperfusion. The results showed that (1) the phosphorylation of Ser16 and Thr17 residues of PLB increased at the end of the ischemia and the onset of reperfusion, respectively. The increase in Thr17 phosphorylation was associated with a recovery of relaxation to preischemic values. This recovery occurred in spite of the fact that contractility was depressed. (2) The reperfusion-induced increase in Thr17 phosphorylation was dependent on Ca2+ entry to the cardiac cell. This Ca2+ influx would mainly occur by the coupled activation of the Na+ / H+ exchanger and the Na+ / Ca2+ exchanger working in the reverse mode, since phosphorylation of Thr17 was decreased by inhibition of these exchangers and not affected by blockade of the L-type Ca2+ channels. (3) Specific inhibition of CaMKII by KN93 significantly decreased Thr17 phosphorylation. This decrease was associated with an impairment of myocardial relaxation. The present study suggests that the phosphorylation of Thr17 of PLB upon reflow, may favor the full recovery of relaxation after ischemia.  相似文献   

10.
The mechanism by which chloride increases sarcoplasmic reticulum (SR) Ca2+ permeability was investigated. In the presence of 3 microM Ca2+, Ca2+ release from 45Ca(2+)-loaded SR vesicles prepared from procine skeletal muscle was increased approximately 4-fold when the media contained 150 mM chloride versus 150 mM propionate, whereas in the presence of 30 nM Ca2+, Ca2+ release was similar in the chloride- and the propionate-containing media. Ca(2+)-activated [3H]ryanodine binding to skeletal muscle SR was also increased (2- to 10-fold) in media in which propionate or other organic anions were replaced with chloride; however, chloride had little or no effect on cardiac muscle SR 45Ca2+ release or [3H]ryanodine binding. Ca(2+)-activated [3H]ryanodine binding was increased approximately 4.5-fold after reconstitution of skeletal muscle RYR protein into liposomes, and [3H]ryanodine binding to reconstituted RYR protein was similar in chloride- and propionate-containing media, suggesting that the sensitivity of the RYR protein to changes in the anionic composition of the media may be diminished upon reconstitution. Together, our results demonstrate a close correlation between chloride-dependent increases in SR Ca2+ permeability and increased Ca2+ activation of skeletal muscle RYR channels. We postulate that media containing supraphysiological concentrations of chloride or other inorganic anions may enhance skeletal muscle RYR activity by favoring a conformational state of the channel that exhibits increased activation by Ca2+ in comparison to the Ca2+ activation exhibited by this channel in native membranes in the presence of physiological chloride (< or = 10 mM). Transitions to this putative Ca(2+)-activatable state may thus provide a mechanism for controlling the activation of RYR channels in skeletal muscle.  相似文献   

11.
12.
Adrenaline and insulin are the major hormones regulating glycogen metabolism in skeletal muscle. We have investigated the effects of these hormones on the rate-limiting enzymes of glycogen degradation and synthesis (phosphorylase and glycogen synthase respectively) in GM-/- mice homozygous for a null allele of the major skeletal muscle glycogen targeting subunit (GM) of protein phosphatase 1 (PP1). Hyperphosphorylation of Ser14 in phosphorylase, and Ser7, Ser640 and Ser640/644 of GS, in the skeletal muscle of GM-/- mice compared with GM+/+ mice indicates that the PP1-GM complex is the major phosphatase that dephosphorylates these sites in vivo. Adrenaline caused a 2.4-fold increase in the phosphorylase (-/+AMP) activity ratio in the skeletal muscle of control mice compared to a 1.4 fold increase in GM-/- mice. Adrenaline also elicited a 67% decrease in the GS (-/+G6P) activity ratio in control mice but only a small decrease in the skeletal muscle of GM-/- mice indicating that GM is required for the full response of phosphorylase and GS to adrenaline. PP1-GM activity and the amount of PP1 bound to GM decreased 40% and 45% respectively, in response to adrenaline in control mice. The data support a model in which adrenaline stimulates phosphorylation of phosphorylase Ser14 and GS Ser7 in GM+/+ mice by both kinase activation and PP1-GM inhibition and the phosphorylation of GS Ser640 and Ser640/644 by PP1-GM inhibition alone. Insulin decreased the phosphorylation of GS Ser640 and Ser640/644 and stimulated the GS (-/+G6P) activity ratio by approximately 2-fold in the skeletal muscle of either GM-/- and or control mice, but the low basal and insulin stimulated GS activity ratios in GM-/- mice indicate that PP1-GM is essential for maintaining normal basal and maximum insulin stimulated GS activity ratios in vivo.  相似文献   

13.
Thapsigargin is found to be a potent inhibitor of the intracellular Ca2+ pump proteins from skeletal muscle sarcoplasmic reticulum (SR), cardiac SR, and brain microsomes. For skeletal muscle SR, the molar ratio of thapsigargin to Ca2+ pump protein for complete inhibition (MRc) of the Ca2+ loading rate, Ca(2+)-dependent ATPase activity, and formation of phosphorylated intermediate (EP) was approximately 1. When the Ca2+ pump protein of low affinity to Ca2+ (E2 state) was pretreated with thapsigargin, ATP and Ca2+ binding to the Ca2+ pump protein was completely inhibited. In the presence of Ca2+ (E1 state), Ca2+ pump protein was protected from inactivation by thapsigargin with respect to Ca2+ binding and EP formation. The MRc for brain microsomes, which mediate Ca2+ uptake into intracellular (inositol 1,4,5-trisphosphate-releasable) Ca2+ pools, is likewise stoichiometric. Approximately 30% of Ca2+ loading activity of brain microsomes was insensitive to thapsigargin, indicating the presence of other Ca2+ pumping system(s). The MRc for heart is 3.8, indicating that the Ca2+ pump of cardiac SR is less sensitive to thapsigargin. Phosphorylation of cardiac SR with protein kinase A increased the sensitivity to thapsigargin to MRc of 2.8. In summary, we find that: 1) thapsigargin is the most effective inhibitor of the Ca2+ pump protein of intracellular membranes (SR and endoplasmic reticulum); 2) its primary inhibitory action appears to inactivate the E2 form of the enzyme preferentially; 3) cardiac SR shows lesser sensitivity to thapsigargin than skeletal muscle SR and brain microsomes; protein kinase A treatment of cardiac SR enhances the sensitivity to the drug.  相似文献   

14.
Regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in airway smooth muscle (ASM) during agonist stimulation involves sarcoplasmic reticulum (SR) Ca(2+) release and reuptake. The sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is key to replenishment of SR Ca(2+) stores. We examined regulation of SERCA in porcine ASM: our hypothesis was that the regulatory protein phospholamban (PLN) and the calmodulin (CaM)-CaM kinase (CaMKII) pathway (both of which are known to regulate SERCA in cardiac muscle) play a role. In porcine ASM microsomes, we examined the expression and extent of PLN phosphorylation after pharmacological inhibition of CaM (with W-7) vs. CaMKII (with KN-62/KN-93) and found that PLN is phosphorylated by CaMKII. In parallel experiments using enzymatically dissociated single ASM cells loaded with the Ca(2+) indicator fluo 3 and imaged using fluorescence microscopy, we measured the effects of PLN small interfering RNA, W-7, and KN-62 on [Ca(2+)](i) responses to ACh and direct SR stimulation. PLN small interfering RNA slowed the rate of fall of [Ca(2+)](i) transients to 1 microM ACh, as did W-7 and KN-62. The two inhibitors additionally slowed reuptake in the absence of PLN. In other cells, preexposure to W-7 or KN-62 did not prevent initiation of ACh-induced [Ca(2+)](i) oscillations (which were previously shown to result from repetitive SR Ca(2+) release/reuptake). However, when ACh-induced [Ca(2+)](i) oscillations reached steady state, subsequent exposure to W7 or KN-62 decreased oscillation frequency and amplitude and slowed the fall time of [Ca(2+)](i) transients, suggesting SERCA inhibition. Exposure to W-7 completely abolished ongoing ACh-induced [Ca(2+)](i) oscillations in some cells. Preexposure to W-7 or KN-62 did not affect caffeine-induced SR Ca(2+) release, indicating that ryanodine receptor channels were not directly inhibited. These data indicate that, in porcine ASM, the CaM-CaMKII pathway regulates SR Ca(2+) reuptake, potentially through altered PLN phosphorylation.  相似文献   

15.
Role of glycogen content in insulin resistance in human muscle cells   总被引:1,自引:0,他引:1  
We have used primary human muscle cell cultures to investigate the role of glycogen loading in cellular insulin resistance. Insulin pre-treatment for 2 h markedly impaired insulin signaling, as assessed by protein kinase B (PKB) phosphorylation. In contrast, insulin-dependent glycogen synthesis, glycogen synthase (GS) activation, and GS sites 3 de-phosphorylation were impaired only after 5 h of insulin pre-treatment, whereas 2-deoxyglucose transport was only decreased after 18 h pre-treatment. Insulin-resistant glycogen synthesis was associated closely with maximal glycogen loading. Both glucose limitation and 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside (AICAR) treatment during insulin pre-treatment curtailed glycogen accumulation, and concomitantly restored insulin-sensitive glycogen synthesis and GS activation, although GS de-phosphorylation and PKB phosphorylation remained impaired. Conversely, glycogen super-compensation diminished insulin-sensitive glycogen synthesis and GS activity. Insulin acutely promoted GS translocation to particulate subcellular fractions; this was abolished by insulin pre-treatment, as was GS dephosphorylation therein. Limiting glycogen accumulation during insulin pre-treatment re-instated GS dephosphorylation in particulate fractions, whereas glycogen super-compensation prevented insulin-stimulated GS translocation and dephosphorylation. Our data suggest that diminished insulin signaling alone is insufficient to impair glucose disposal, and indicate a role for glycogen accumulation in inducing insulin resistance in human muscle cells.  相似文献   

16.
The sarcoplasmic reticulum (SR) plays a critical role in mediating cardiac contractility and its function is abnormal in the diabetic heart. However, the mechanisms underlying SR dysfunction in the diabetic heart are not clear. Because protein phosphorylation regulates SR function, this study examined the phosphorylation state of phospholamban, a key SR protein that regulates SR calcium (Ca2+) uptake in the heart. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (STZ; 65 mg kg(-1) i.v.), and the animals were humanely killed after 6 weeks and cardiac SR function was examined. Depressed cardiac performance was associated with reduced SR Ca2+-uptake activity in diabetic animals. The reduction in SR Ca2+-uptake was consistent with a significant decrease in the level of SR Ca2+-pump ATPase (SERCA2a) protein. The level of phospholamban (PLB) protein was also decreased, however, the ratio of PLB to SERCA2a was increased in the diabetic heart. Depressed SR Ca2+-uptake was also due to a reduction in the phosphorylation of PLB by the Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA). Although the activities of the SR-associated Ca2+-calmodulin-dependent protein kinase (CaMK), cAMP-dependent protein kinase (PKA) were increased in the diabetic heart, depressed phosphorylation of PLB could partly be attributed to an increase in the SR-associated protein phosphatase activities. These results suggest that there is increased inhibition of SERCA2a by PLB and this appears to be a major defect underlying SR dysfunction in the diabetic heart.  相似文献   

17.
Caffeine has been shown to increase the Ca2+ release frequency (Ca2+ sparks) from the sarcoplasmic reticulum (SR) through ryanodine-sensitive stores and relax gastric fundus smooth muscle. Increased Ca2+ store refilling increases the frequency of Ca2+ release events and store refilling is enhanced by CaM kinase II (CaMKII) phosphorylation of phospholamban (PLB). These findings suggest that transient, localized Ca2+ release events from the SR may activate CaMKII and contribute to relaxation by enhancing store refilling due to PLB Thr17 phosphorylation. To investigate this possibility, we examined the effects of caffeine on CaMKII, muscle tone, and PLB phosphorylation in murine gastric fundus smooth muscle. Caffeine (1 mM) hyperpolarized and relaxed murine gastric fundus smooth muscle and activated CaMKII. Ryanodine, tetracaine, or cyclopiazonic acid each prevented CaMKII activation and significantly inhibited caffeine-induced relaxation. The large-conductance Ca2+-activated K+ channel blocker iberiotoxin, but not apamin, partially inhibited caffeine-induced relaxation. Caffeine-induced CaMKII activation increased PLB Thr17, but not PLB Ser16 phosphorylation. 3-Isobutyl-1-methylxanthine increased PLB Ser16 phosphorylation, but not PLB Thr17 phosphorylation. The CaMKII inhibitor KN-93 inhibited caffeine-induced relaxation and PLB Thr17 phosphorylation. These results show that caffeine-induced CaMKII activation and PLB phosphorylation play a role in the relaxation of gastric fundus smooth muscles. Ca2+/CaM-dependent protein kinase II  相似文献   

18.
Recent studies have demonstrated phosphorylation of the cardiac and slow-twitch muscle isoform (SERCA2a) of the sarcoplasmic reticulum (SR) Ca2+-ATPase (at Ser38) by a membrane-associated Ca2+/calmodulin-dependent protein kinase (CaM kinase). Analysis of the functional consequence of Ca2+-ATPase phosphorylation in the native SR membranes, however, is complicated by the concurrent phosphorylation of the SR proteins phospholamban (PLN) which stimulates Ca2+ sequestration by the Ca2+-ATPase, and the ryanodine receptor-Ca2+ release channel (RYR-CRC) which likely augments Ca2+ release from the SR. In the present study, we achieved selective phosphorylation of the Ca2+-ATPase by endogenous CaM kinase in isolated rabbit cardiac SR vesicles utilizing a PLN monoclonal antibody (PLN AB) which inhibits PLN phosphorylation, and the RYR-CRC blocking drug, ruthenium red, which inhibits phosphorylation of RYR-CRC. Analysis of the Ca2+ concentration-dependence of ATP-energized Ca2+ uptake by SR showed that endogenous CaM kinase mediated phosphorylation of the Ca2+-ATPase, in the absence of PLN and/or RYR-CRC phosphorylation, results in a significant increase (approximately 50-70%) in the Vmax of Ca2+ sequestration without any change in the k0.5 for Ca2+ activation of the Ca2+ transport rate. On the other hand, treatment of SR with PLN AB (which mimics the effect of PLN phosphorylation by uncoupling Ca2+-ATPase from PLN) resulted in approximately 2-fold decrease in k0.5 for Ca2+ without any change in Vmax of Ca2+ sequestration. These findings suggest that, besides PLN phosphorylation, direct phosphorylation of the Ca2+-ATPase by SR-associated CaM kinase serves to enhance the speed of cardiac muscle relaxation.  相似文献   

19.
Phosphorylation of skeletal muscle ryanodine receptor (RyR) calcium release channels by endogenous kinases incorporated into lipid bilayers with native sarcoplasmic reticulum vesicles was investigated during exposure to 2 mM cytoplasmic ATP. Activation of RyRs after 1-min exposure to ATP was reversible upon ATP washout. In contrast, activation after 5 to 8 min was largely irreversible: the small fall in activity with washout was significantly less than that after brief ATP exposure. The irreversible activation was reduced by acid phosphatase and was not seen after exposure to nonhydrolyzable ATP analogs. The data suggested that the channel complex was phosphorylated after addition of ATP and that phosphorylation reduced the RyR's sensitivity to ATP, adenosine, and Ca(2+). The endogenous kinase was likely to be a calcium calmodulin kinase II (CaMKII) because the CaMKII inhibitor KN-93 and an inhibitory peptide for CaMKII prevented the phosphorylation-induced irreversible activation. In contrast, phosphorylation effects remained unchanged with inhibitory peptides for protein kinase C and A. The presence of CaMKIIbeta in the SR vesicles was confirmed by immunoblotting. The results suggest that CaMKII is anchored to skeletal muscle RyRs and that phosphorylation by this kinase alters the enhancement of channel activity by ATP and Ca(2+).  相似文献   

20.
The role of lipid peroxidation (LPO) in the damages of the enzymic system of Ca2+ transport in sarcoplasmic reticulum (SR) membranes of skeletal and cardiac muscles under conditions of vitamin E deficiency, ischemia and limb reoxygenation as well as in emotional-pain stress was investigated. It was shown that these processes are associated with activation of endogenous LPO in SR membranes "in vivo" and with simultaneous inhibition of Ca2+ transport, (i. e. decrease of the Ca2+/ATP ratio) and inactivation of Ca-ATPase. The degree of damage of the Ca2+ transport system was correlated with the concentration of LPO products accumulated in SR membranes "in vivo and during LPO induction by the Fe2+ + ascorbate system 'in vitro". Injection of natural and synthetic free radical scavengers (e. g. 4-methyl-2.6-ditretbutylphenol, alpha-tocopherol) to experimental animals resulted in practically complete suppression of LPO activation "in vivo" and in partial protection of the Ca2+-transporting capacity of SR membranes. A comparison of experimental results allowed to estimate the role of LPO in SR damage under pathological conditions. Model experiments with "contraction-relaxation" cycles including isolated components of muscle fibers (SR fragments and myofibrils) demonstrated that LPO induction in SR membranes by the Fe2+ + ascorbate system results in complete elimination of the relaxation step in myofibrils due to the loss of the SR affinity to decrease the concentration of Ca2+ in the incubation medium. This effect can be removed by free radical scavengers. The role of LPO in pathological changes of muscle contractility is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号