首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 584 毫秒
1.
Feeding behavior in hydra is initiated by the association of glutathione (GSH) with a putative external chemoreceptor. In the present study, the binding of [35S]GSH to hydra membranes has been characterized. Nondisplaceable [35S]GSH binding which compromised previous analyses [Grosvenor, W., Bellis, S., Kass-Simon, G., & Rhoads, D. (1992) Biochim. Biophys. Acta (in press)] was eliminated by treating membranes with an inhibitor of GSH metabolism, borate in combination with L-serine. The specific binding which was not inhibited by borate/serine demonstrated many of the characteristics expected of a ligand/receptor interaction. The binding was rapid, reversible, and saturable. A Scatchard analysis of saturation isotherms indicated a dissociation constant (KD) of 3.4 microM, a value which is in good agreement with concentrations of glutathione which are known to induce feeding behavior. Hydra membranes were detergent-solubilized with 10 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 100 mM KCl, and 10% glycerol. The soluble fraction contained 40% of the original saturable, reversible GSH binding activity. The KD for GSH binding to the solubilized preparation was estimated as 2.7 microM, a valuable which is not appreciably different from the KD for binding to intact membranes. The fidelity of GSH binding in the solubilized preparation suggests that this preparation will be useful in further characterization of the putative glutathione chemoreceptor.  相似文献   

2.
To elucidate the relationship between L-glutamic acid and the putative chemoreceptor for glutathione, binding of L-[3H]glutamate to a crude membrane fraction from Hydra vulgaris (attenuata) has been characterized. The binding of L-[3H]glutamate was rapid, reversible and saturable. A Scatchard analysis of the specific binding revealed values of 10 microM for the dissociation constant (Kd) and 170 pmol/mg for the maximal capacity of binding sites (Bmax). A maximum of 65% of the specific L-[3H]glutamate binding was inhibited by the chemostimulatory peptide, glutathione. This glutathione-sensitive glutamate binding presumably represents the association of glutamate with a putative chemoreceptor which modulates feeding behavior in hydra. The remaining 35% of the specific L-[3H]glutamate binding may be due to a second class of glutamate binding sites which is insensitive to glutathione. The identification of glutathione-insensitive glutamate binding is the first indication of a putative glutamate receptor, which may mediate an action independent of the glutathione-induced feeding response. The glutathione-insensitive and glutathione-sensitive sites must have similar affinities for glutamate since these sites were indistinguishable by Scatchard analysis. A preliminary characterization of the glutathione-insensitive site, performed in the presence of saturating levels of glutathione, revealed inhibition of glutathione-insensitive glutamate binding by kainate and quisqualate, but not by N-methyl-D-aspartate. A glutathione-insensitive L-[3H]glutamate binding suggests that kainate and alpha-aminoadipate may be selective ligands for the glutathione-insensitive and glutathione-sensitive glutamate binding sites, respectively.  相似文献   

3.
Selenium has been reported to affect glutathione (GSH) concentrations in short-term animal-feeding experiments. Given the central role that this tripeptide plays in maintaining cellular homeostasis, it was hypothesized that perturbations in glutathione metabolism induced by selenium might account for its cancer chemopreventive activity. In the present study, four experiments were conducted in which the effect of acute, short-, or long-term exposure to selenium was assessed. Selenium was provided as either sodium selenite or D,L-selenomethionine. Selenite was observed to induce a biphasic response in total liver GSH. Injected selenium caused an acute reduction in GSH, whereas short-term feeding (up to 8 wk) increased both total GSH and oxidized glutathione (GSSH), an effect that gradually diminished in magnitude with prolonged feeding. Our data suggest that such changes are unlikely to account for the chemopreventive activity of selenium for the following reasons: Perturbations in glutathione metabolism occurred only at doses of selenite that approached toxicity. These doses are higher than what would be required for producing cancer chemoprevention. The transient nature of these changes also contrasts with the need for a continuous supplementation of selenite in suppression of tumorigenesis. Furthermore, selenomethionine was found to have little activity in altering glutathione metabolism, even though it compares favorably with selenite as a cancer chemopreventive agent. Nonetheless, these findings do not discount the possibility that sulfhydryl compounds, such as glutathione, might be used to modify the toxicity and/or enhance the cancer prophylactic activity of selenium compounds.  相似文献   

4.
Binding sites for endotoxins (lipopolysaccharides) on human monocytes.   总被引:16,自引:0,他引:16  
The nature of the binding sites for LPS on human monocytes was investigated using [3H] labeled intact LPS from Neisseria meningitidis and from Salmonella minnesota R7, and the [3H] labeled purified inner core region (PS-OMe) of S.m. R7 LPS. In the presence of serum, intact LPS from enterobacterial and nonenterobacterial strains bound to monocytes in a dose-dependent, saturable, and displaceable fashion. N.m. LPS and LPS from the enterobacterial strain of Escherichia coli 0111-B4 bound to the same sites on monocytes as assessed in competitive binding experiments. Specific binding of intact LPS to monocytes occurred through the CD14 molecule as shown by the ability of mAb and of F(ab')2 fragments of mAb directed against specific epitopes of CD14 to inhibit the binding of [3H]-LPS to cells and by the lack of binding of intact LPS to CD14-deficient cells from patients with paroxysmal nocturnal hemoglobinuria. Specific binding of LPS to monocytes was not mediated by the CD11/CD18 complex because mAb to the alpha and beta chains of the Leu-CAM molecules did not alter the binding of LPS to cells and because LPS did not inhibit the binding of labeled mAb to monocytes. [3H]-PS-OMe also bound in a dose-dependent and displaceable fashion to monocytes involving an unidentified, non-CD14, binding site on the cells. Binding of LPS to monocytes also involved nonsaturable binding sites for hydrophobic structures of LPS as evidenced in binding experiments performed in the absence of serum. These observations indicate that intact LPS may interact with the monocyte membrane in at least three ways including serum-dependent binding to CD14 and to a lectin-like receptor, and serum-independent hydrophobic interactions.  相似文献   

5.
Quinolinic acid increased the generation of lipid peroxidation products by isolated rat brain microvessels in vitro. The effect was inhibited both by a specific NMDA receptor antagonist D-2-amino-5-phosphonovaleric acid and by reduced glutathione (GSH). Furthermore, quinolinic acid displaced specific binding of [(3)H]-L-glutamate by cerebral microvessel membranes, particularly in the presence of NMDA receptor co-agonist (glycine) and modulator (spermidine). We conclude that quinolinic acid can cause potentially cytotoxic lipid peroxidation in brain microvessels via an NMDA receptor mediated mechanism.  相似文献   

6.
Recent results from our laboratory and others have suggested a possible physiological functional role(s) for leukotrienes in gastric mucosa. In the present study 3H-LTC4 binds to washed rabbit gastric mucosal membranes at 4 degrees C with a Kd of 5 nM and a Bmax of 31.3 pmol/mg protein. Leukotrienes D4, E4, B4, oxidized glutathione (GSSG), cysteine, and mercaptoethanol were unable to displace 3H-LTC4 at 1 microM concentrations, while GSH inhibited binding with a Ki of 47 nM. Differential centrifugation of the membrane preparation to remove mitochondria resulted in Ki values for LTC4 and GSH of 14 and 23 nM, respectively. The similar binding affinities and competitive receptor binding kinetics for GSH and LTC4, the low affinity for other leukotrienes, and a Ki of 7 microM for hematin, a substrate for glutathione S-transferase, suggest that 3H-LTC4 binds to a GSH site which does not discriminate between LTC4 and GSH. Membranes fractionated to remove mitochondria were assayed for glutathione peroxidase, gamma-glutamyltranspeptidase, and glutathione S-transferase as possible binding sites for LTC4. We were unable to detect enzyme activity for any of the three enzymes. The binding of LTC4 in gastric mucosa differs from other tissues with respect to the high affinity for GSH, and thus becomes an appropriate tissue in which to investigate the relationships between LTC4 and GSH.  相似文献   

7.
Varga  V.  Jenei  Zs.  Janáky  R.  Saransaari  P.  Oja  S. S. 《Neurochemical research》1997,22(9):1165-1171
A study was made of the effects of reduced (GSH) and oxidized (GSSG) glutathione on the Na+-independent and N-methyl-D-aspartate (NMDA) displaceable bindings of glutamate, on the binding of kainate, 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and ligands of the brain NMDA receptor-ionophore complex: glycine, dizocilpine (MK-801) and (±)-3-(2-car-boxypiperazin-4-yl)propyl-1-phosphonate (CPP). GSH and GSSG strongly inhibited the binding of glutamate, CPP and AMPA, kainate and glycine binding being less affected. Both peptides enhanced the binding of dizocilpine in a time- and concentration-dependent manner. This activatory effect was not additive to that of saturating concentrations of glutamate or glutamate plus glycine. The activation of dizocilpine binding by GSH and GSSG was prevented by the competitive NMDA and glycine antagonists DL-2-amino-5-phosphonovalerate and 7-chlorokynurenate. GSH and GSSG may be endogenous ligands of AMPA and NMDA receptors, binding preferably to the glutamate recognition site via their -glutamyl moieties. In addition to this, at millimolar concentrations they may regulate the redox state of the NMDA receptor-ionophore complex.  相似文献   

8.
Incubation of radiolabeled L-glutamic acid, a putative central excitatory neurotransmitter, in 50 mM Tris-acetate buffer (pH 7.4) at 30 degrees C in the absence of brain synaptic membranes resulted in a significant adsorption of the radioactivity to glass fiber filters routinely employed to trap the bound ligand in receptor binding assays. The adsorption was not only eliminated by the inclusion of L-isomers of structurally related amino acids, but also inhibited by that of most presumed agonists and antagonists for the brain glutamate receptors. This displaceable adsorption was a temperature-dependent nonreversible, and saturable phenomenon. Scatchard analysis of these data revealed that the adsorption consisted of a single component with an apparent dissociation constant of 73 nM. The displaceable adsorption was significantly attenuated by a concurrent incubation with papain, pronase E, and phospholipase C. A significant amount of the radioactivity was detected in the pass-through fraction of the Dowex column following an application of the reaction mixture incubated with purified [3H]glutamate at 30 degrees C for 60 min in the absence of membranous proteins added. Complete abolition of the displaceable adsorption resulted from the use of incubation buffer boiled at 100 degrees C as well as filtered through a nitrocellulose membrane filter with a pore size of 0.45 micron immediately before use. These results suggest that the displaceable adsorption may be attributable to the radioactive metabolite of [3H]glutamate by microorganisms contaminating the Tris-acetate buffer. This might in part contribute to some of the controversial results with regard to receptor binding studies on acidic amino acids.  相似文献   

9.
It was recently reported that suppression of murine bone marrow hematopoiesis is a very sensitive indicator for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity (1). We report here that a structural analog of TCDD, 1-NH2-3,7,8-trichlorodibenzo-p-dioxin (NH2-TriCDD), is a specific and effective antagonist for TCDD-induced myelotoxicity and enzyme induction. When administered to mice or added directly into culture at a 100-fold excess, relative to TCDD, NH2-TriCDD completely abrogated the ability of TCDD to inhibit granulocyte-macrophage progenitor cells (CFU-C) formation, an indicator of hematopoiesis. Further, NH2-TriCDD inhibited TCDD-induced activation of cytochrome P1-450 monooxygenase activity. Studies designed to measure specific binding of TCDD to the cytosolic Ah receptor indicated that NH2-TriCDD effectively inhibited binding of TCDD to the receptor by acting as a competitive antagonist (Ki = 0.72 nM).  相似文献   

10.
The hydra GSH receptor. Pharmacological and radioligand binding studies   总被引:1,自引:0,他引:1  
1. The GSH-induced feeding response of hydra has been studied using pharmacological and biochemical methods. 2. Dopaminergic agonists inhibit the response, whereas dopaminergic blocking agents increase it. Phosphodiesterase inhibitors completely inhibit the feeding response. 3. The specific binding of the competitive inhibitor of feeding response, [3H]glutamate, to hydra cellular fractions has been evaluated, and a strong GSH-sensitive binding has been observed in a nematocyst-rich fraction. 4. After pharmacological reduction of the nematocyst number, both feeding response and glutamate binding are severely reduced. 5. Ca2+ ions must be present for the feeding response to occur, whereas glutamate binding occurs both without Ca2+ and in the presence of EDTA.  相似文献   

11.
Glutathione and Signal Transduction in the Mammalian CNS   总被引:6,自引:0,他引:6  
The tripeptide glutathione (GSH) has been thoroughly investigated in relation to its role as antioxidant and free radical scavenger. In recent years, novel actions of GSH in the nervous system have also been described, suggesting that GSH may serve additionally both as a neuromodulator and as a neurotransmitter. In the present article, we describe our studies to explore further a potential role of GSH as neuromodulator/neurotransmitter. These studies have used a combination of methods, including radioligand binding, synaptic release and uptake assays, and electrophysiological recording. We report here the characteristics of GSH binding sites, the interrelationship of GSH with the NMDA receptor, and the effects of GSH on neural activity. Our results demonstrate that GSH binds via its gamma-glutamyl moiety to ionotropic glutamate receptors. At micromolar concentrations GSH displaces excitatory agonists, acting to halt their physiological actions on target neurons. At millimolar concentrations, GSH, acting through its free cysteinyl thiol group, modulates the redox site of NMDA receptors. As such modulation has been shown to increase NMDA receptor channel currents, this action may play a significant role in normal and abnormal synaptic activity. In addition, GSH in the nanomolar to micromolar range binds to at least two populations of binding sites that appear to be distinct from all known excitatory amino acid receptor subtypes. GSH bound to these sites is not displaceable by glutamatergic agonists or antagonists. These binding sites, which we believe to be distinct receptor populations, appear to recognize the cysteinyl moiety of the GSH molecule. Like NMDA receptors, the GSH binding sites possess a coagonist site(s) for allosteric modulation. Furthermore, they appear to be linked to sodium ionophores, an interpretation supported by field potential recordings in rat cerebral cortex that reveal a dose-dependent depolarization to applied GSH that is blocked by the absence of sodium but not by lowering calcium or by NMDA or (S)-2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate antagonists. The present data support a reevaluation of the role of GSH in the nervous system in which GSH may be involved both directly and indirectly in synaptic transmission. A full accounting of the actions of GSH may lead to more comprehensive understanding of synaptic function in normal and disease states.  相似文献   

12.
γ-Glutamyl transpeptidase (EC 2.3.2.2) activity is described in the coelenterate, Hydraattenuata, using the substrate γ-glutamyl-p-nitroanilide. The properties of the γ-glutamyl donor required for binding to the transpeptidase were investigated by measuring the ability of GSH analogs to inhibit the release of p-nitroaniline. Whereas no binding was observed when the γ-glutamyl moiety was altered, analogs with substitution in the Cys residue were capable of binding to the enzyme. A specificity for the Gly residue was indicated because analogs containing Leu or Tyr in place of Gly exhibited decreased binding capacities for the hydra transpeptidase. A comparison of these data with those obtained using the same analogs in the GSH induced feeding response bioassay shows that γ-glutamyl transpeptidase activity and the GSH receptor for the hydra feeding response have different specificities.  相似文献   

13.
M Denis 《Cellular immunology》1992,141(1):182-188
In this paper, we examined the contribution of the lymphokine interleukin-6 (IL-6) to the growth of four virulent strains of Mycobacterium avium and the nature of the binding moieties on the mycobacteria. First, we showed that human or mouse recombinant interleukin-6 are potent growth factors for four strains of virulent M. avium. This was shown to occur in tissue culture medium, which does not support maximal growth of M. avium. Bioactive IL-6 was required, inasmuch as heat-activating IL-6 or adding an antibody against IL-6 blocked this growth-enhancing ability. The rapid uptake of IL-6 by M. avium was indicated by the fact that the incubation of IL-6 with the four M. avium strains led to a rapid removal of the bioactivity from the culture medium and a rapid removal of radiolabeled IL-6. Scatchard analysis of receptor interaction showed that the M. avium strains had a single receptor species with a Kd of 50 nM and the number of receptor sites was approximately 15,000 bacterium. Blocking experiments showed that the binding of radiolabeled IL-6 was fully displaceable with cold IL-6, but not with other lymphokines. These data suggest that IL-6 may play an important role in the pathogenesis of M. avium infections, notably by promoting growth of M. avium, and that some virulent M. avium strains bind IL-6 in a specific manner.  相似文献   

14.
Nonpeptide antagonists of the human gonadotropin-releasing hormone receptor (GnRH-R) have been the subject of considerable interest because of their potential as a new class of oral therapeutics for the treatment of sex hormone-dependent diseases and infertility. While many classes of competitive GnRH-R antagonists have been described, we present here the first characterization of an allosteric nonpeptide GnRH-R antagonist. Previously, 5-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-ylmethyl)furan-2-carboxylic acid (2,4,6-trimethoxyphenyl)amide (here called Furan-1) had been demonstrated to be a potent GnRH-R antagonist both in vitro and in vivo. Using mutagenesis, the binding sites for Furan-1 and another potent nonpeptide antagonist (NBI-42902) have been mapped and are shown to be adjacent but nonoverlapping. Furan-1 is shown to affect the binding kinetics of radiolabeled peptide agonists as well as radiolabeled NBI-42902, and the kinetic data fit the allosteric ternary complex model. Furan-1 is considerably negatively cooperative with the nonpeptide antagonist and extremely negatively cooperative with the peptide agonist [125I-His5,d-Tyr6]GnRH so that it is nearly indistinguishable from an orthosteric competitive compound. Taken together, these data were used to develop a model of the nonpeptides bound to the GnRH-R binding site consistent with the current data.  相似文献   

15.
The Family C G-protein-coupled receptors include the metabotropic glutamate receptors, the gamma-aminobutyric acid, type B (GABAB) receptor, the calcium-sensing receptor (CaSR), which participates in the regulation of calcium homeostasis in the body, and a diverse group of sensory receptors that encompass the amino acid-activated fish 5.24 chemosensory receptor, the mammalian T1R taste receptors, and the V2R pheromone receptors. A common feature of Family C receptors is the presence of an amino acid binding site. In this study, a preliminary in silico analysis of the size and shape of the amino acid binding pocket in selected Family C receptors suggested that some members of this family could accommodate larger ligands such as peptides. Subsequent screening and docking experiments identified GSH as a potential ligand or co-ligand at the fish 5.24 receptor and the rat CaSR. These in silico predictions were confirmed using an [3H]GSH radioligand binding assay and a fluorescence-based functional assay performed on wild-type and chimeric receptors. Glutathione was shown to act as an orthosteric agonist at the 5.24 receptor and as a potent enhancer of calcium-induced activation of the CaSR. Within the mammalian receptors, this effect was specific to the CaSR because GSH neither directly activated nor potentiated other Family C receptors including GPRC6A (the putative mammalian homolog of the fish 5.24 receptor), the metabotropic glutamate receptors, or the GABAB receptor. Our findings reveal a potential new role for GSH and suggest that this peptide may act as an endogenous modulator of the CaSR in the parathyroid gland where this receptor is known to control the release of parathyroid hormone, and in other tissues such as the brain and gastrointestinal tract where the role of the calcium receptor appears to subserve other, as yet unknown, physiological functions.  相似文献   

16.
Kadsurenone inhibits specifically and competitively the specific binding of 3H-labeled platelet-activating factor ([3H]PAF) to rabbit platelet membranes. Since the 5-propyl analog of kadsurenone (dihydrokadsurenone) retains roughly the same potency as kadsurenone, [3H]dihydrokadsurenone was therefore synthesized through tritiation of kadsurenone. Specific binding of [3H]dihydrokadsurenone in rabbit platelet membranes is saturable. Scatchard analysis of binding data reveals the presence of a single class of binding sites with an equilibrium dissociation constant (KD) of 16.81 ( +/- 0.57) nM. The total number (Bmax) of detectable binding sites is 2.27 ( +/- 0.09) pmol/mg protein. Both C16- and C18-PAF fully displace the specific binding of (3H]dihydrokadsurenone (5 nM) with an identical ED50 of 3.6 X 10(-9) M. Dihydrokadsurenone and kadsurenone also displace the specific binding with roughly the same potency (ED50 = 4.4 X 10(-8) M). Several other PAF analogs and PAF receptor antagonists tested show relative potencies roughly similar to those found in the [3H]PAF-specific binding assay. Other pharmacological agents with no PAF antagonistic activities did not inhibit the specific binding of [3H]dihydrokadsurenone. These results agree with our previous conclusion that kadsurenone is a specific and competitive receptor antagonist and strongly suggest that PAF and the PAF receptor antagonists tested may interact at a common binding site in the PAF receptor.  相似文献   

17.
The binding characteristics of [3H]U46619 to washed human platelets were studied. [3H]U46619 binding to washed human platelets was saturable and displaceable. Kinetic studies yielded a Kd of 11 +/- 4 nM (n = 4). Scatchard analysis of equilibrium binding studies revealed one class of high affinity binding sites with a Kd of 20 +/- 7 nM and a Bmax of 9.1 +/- 2.3 fmole/10(7) platelets (550 +/- 141 binding sites per platelet) (n = 4). A number of compounds that act as either agonists or antagonists of the TXA2/PGH2 receptor were tested for their ability to inhibit the binding of [3H]U46619 to washed human platelets. The Kds of the agonists and antagonists were similar to their potencies to induce or inhibit platelet aggregation. These data provide some evidence that [3H]U46619 binds to the putative human platelet TXA2/PGH2 receptor.  相似文献   

18.
A rapid and sensitive competitive receptor binding assay for beta-1 and beta-2 adrenergic binding for adrenergic agents has been developed. The steps that are critical for the success of the assay are given in detail so that the assay can be set up in any routine laboratory with relative ease. The rationale behind the use of specific reagents is discussed. The assay requires microgram quantities of test compound, a radiolabeled specific beta adrenergic antagonist [3H]dihydroalprenolol (DHA), and turkey erythrocyte beta-1 and rat erythrocyte beta-2 receptor membranes. Serial dilutions of sample are incubated with appropriate receptor membranes and DHA for 1 hr at room temperature. After equilibrium is attained, the bound radioligand is separated by rapid filtration under vacuum through Whatman GF/B filters. The amount of bound DHA trapped on the filter is inversely proportional to the degree of beta-1 or beta-2 adrenergic binding of the sample. Separation of bound from free radioligand by filtration permits rapid determination of a large number of samples. This assay quantitates and differentiates beta-1 and beta-2 adrenergic binding of synthetic adrenergic agents.  相似文献   

19.
Reduced glutathione (L-gamma-glutamyl-L-cysteinylglycine; GSH) is an endogenous tripeptide involved in the formation and maintenance of protein thiol groups as well as in various detoxification reactions. Because multiple receptor types contain thiol groups or disulfide bridges, effects of GSH treatments on mu-opioid, neurokinin-1/substance P, and kainic acid receptor binding sites were investigated and compared with those produced by dithiothreitol (DTT), a potent synthetic reducing agent. GSH inhibited binding more potently than did DTT at all three receptor types in porcine striatal membrane homogenates as well as in CHAPS-solubilized preparations of the mu and neurokinin-1 sites. GSH-induced inhibitory effects were associated with decreases in maximal binding capacity (Bmax) without significant alteration in apparent affinity (KD). Cysteine, the functional moiety of GSH, mimicked GSH effects albeit with lower potencies, whereas oxidized glutathione had no effects at similar concentrations. In CHAPS-solubilized preparations, the combination of low concentrations of GSH and guanylylimidodiphosphate markedly decreased the Bmax values of the binding of [3H][D-Ala2,Gly-ol5]enkephalin and [3H]substance P. This GSH-mediated mechanism may be important to prevent cell overstimulation by accelerating receptor uncoupling, desensitization, and/or internalization. This is in keeping with purported roles of GSH related to the maintenance of cellular integrity.  相似文献   

20.
Quantum dots (QDs) have been used extensively as fluorescent markers in several studies on living cells. Here, we report the synthesis of conjugates based on glutathione (GSH) and QDs (GSH-QDs) and we prove how these functionalized fluorescent probes can be used for staining a freshwater invertebrate called Hydra vulgaris. GSH is known to promote Hydra feeding response by inducing mouth opening. We demonstrate that GSH-QDs as well are able to elicit biological activity in such an animal, which results in the fluorescent staining of Hydra. GSH-QDs, once they reach the gastric region, are internalized by endodermal cells. The efficiency of GSH-QD internalization increases significantly when nanoparticles are coadministrated with free GSH. We also compared the behavior of bare QDs to that of GSH-QDs both in the presence and in the absence of free GSH. The conclusions from these series of experiments point to the presence of GSH binding proteins in the endodermal cell layer and uncover a novel role played by glutathione in this organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号