首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibrio vulnificus is an estuarine bacterium which can cause opportunistic infections in humans consuming raw Gulf Coast oysters, Crassostrea virginica. Although V. vulnificus is known as a ubiquitous organism in the Gulf of Mexico, its ecological relationship with C. virginica has not been adequately defined. The objective of the present study was to test the hypothesis that V. vulnificus is a persistent microbial flora of oysters and unamenable to traditional methods of controlled purification, such as UV light depuration. Experimental depuration systems consisted of aquaria containing temperature-controlled seawater treated with UV light and 0.2-microns-pore-size filtration. V. vulnificus was enumerated in seawater, oyster shell biofilms, homogenates of whole oyster meats, and tissues including the hemolymph, digestive region, gills, mantle, and adductor muscle. Results showed that depuration systems conducted at temperatures greater than 23 degrees C caused V. vulnificus counts to increase in oysters, especially in the hemolymph, adductor muscle, and mantle. Throughout the process, depuration water contained high concentrations of V. vulnificus, indicating that the disinfection properties of UV radiation and 0.2-microns-pore-size filtration were less than the rate at which V. vulnificus was released into seawater. Approximately 10(5) to 10(6) V. vulnificus organisms were released from each oyster per hour, with 0.05 to 35% originating from shell surfaces. These surfaces contained greater than 10(3) V. vulnificus organisms per cm2. In contrast, when depuration seawater was maintained at 15 degrees C, V. vulnificus was not detected in seawater and multiplication in oyster tissues was inhibited.  相似文献   

2.
Vibrio vulnificus is an estuarine bacterium which can cause opportunistic infections in humans consuming raw Gulf Coast oysters, Crassostrea virginica. Although V. vulnificus is known as a ubiquitous organism in the Gulf of Mexico, its ecological relationship with C. virginica has not been adequately defined. The objective of the present study was to test the hypothesis that V. vulnificus is a persistent microbial flora of oysters and unamenable to traditional methods of controlled purification, such as UV light depuration. Experimental depuration systems consisted of aquaria containing temperature-controlled seawater treated with UV light and 0.2-microns-pore-size filtration. V. vulnificus was enumerated in seawater, oyster shell biofilms, homogenates of whole oyster meats, and tissues including the hemolymph, digestive region, gills, mantle, and adductor muscle. Results showed that depuration systems conducted at temperatures greater than 23 degrees C caused V. vulnificus counts to increase in oysters, especially in the hemolymph, adductor muscle, and mantle. Throughout the process, depuration water contained high concentrations of V. vulnificus, indicating that the disinfection properties of UV radiation and 0.2-microns-pore-size filtration were less than the rate at which V. vulnificus was released into seawater. Approximately 10(5) to 10(6) V. vulnificus organisms were released from each oyster per hour, with 0.05 to 35% originating from shell surfaces. These surfaces contained greater than 10(3) V. vulnificus organisms per cm2. In contrast, when depuration seawater was maintained at 15 degrees C, V. vulnificus was not detected in seawater and multiplication in oyster tissues was inhibited.  相似文献   

3.
Certain indigenous estuarine bacteria, such as Vibrio vulnificus, may cause opportunistic human infections after consumption of raw oysters or exposure of tissues to seawater. V. vulnificus is known to be closely associated with oyster (Crassostrea virginica) tissues and is not removed by controlled purification methods, such as UV light-assisted depuration. In fact, when live shellfish are subjected to controlled purification, the number of V. vulnificus cells can markedly increase. A review of previous studies showed that few workers have examined mechanisms in oysters which may influence the persistence of V. vulnificus in shellfish, such as the fate of V. vulnificus following phagocytosis by molluscan hemocytes. The objectives of this study were to define the intracellular viability and extracellular viability of V. vulnificus during the phagocytic process and to study the release of specific lysosomal enzymes. The viability of a virulent estuarine V. vulnificus isolate with opaque morphology was compared with the viability of a translucent, nonvirulent form, the viability of Vibrio cholerae, and the viability of Escherichia coli in phagocytosis experiments. Our results showed that the levels of phagocytosis and bactericidal degradation of the opaque V. vulnificus isolate were less than the levels of phagocytosis and bactericial degradation of the translucent morphotype. These findings indicate that encapsulation may contribute to resistance to ingestion and degradation by hemocytes. The rates of intracellular death of V. cholerae and E. coli exceeded the rate of intracellular death of the opaque V. vulnificus isolate, even though the ingestion or uptake rates did not differ significantly. The levels of lysozyme activity and acid phosphatase activity were not significantly different in hemocyte monolayers inoculated with V. vulnificus.  相似文献   

4.
Viral Depuration of the Northern Quahaug   总被引:7,自引:7,他引:0       下载免费PDF全文
A study was conducted to evaluate critically the feasibility of using the self-cleansing mechanism as a practical means to obtain virus-free shellfish. Two systems supplied with fresh running seawater, three strains of human enterovirus and the Northern quahaug, were used as working models. Preliminary experiments in the experimental system under arbitrarily selected conditions showed that depuration of poliovirus-polluted quahaugs could be achieved by the method used for the Eastern oyster. The factors affecting viral depuration studied so far included: (i) initial concentration of shellfish pollution; (ii) temperature of seawater; and (iii) salinity of seawater. It was shown that purification of the lightly polluted shellfish was achieved sooner than of the heavily polluted ones. The efficiency of viral depuration was roughly a function of the water temperature within the range tested (5 to 20 C). Reduction of salinity to 50 to 60% of the original level stopped this process completely, but 25% reduction in salinity did not affect significantly the rate of depuration. Preliminary study in the pilot system showed that viral depuration in the large tank appeared to be equally as efficient as that in the small experimental tanks under the particular conditions.  相似文献   

5.
Vibrio vulnificus was enumerated in seawater and shellfish from two Florida estuaries at selected seasonal intervals. There were significant fluctuations in the presence and numbers of V. vulnificus. Relatively high seawater temperature and salinity favored the presence of V. vulnificus in both seawater and shellfish samples.  相似文献   

6.
Vibrio vulnificus phages are abundant in coastal marine environments, shellfish, clams, and oysters. SSP002, a V. vulnificus-specific bacteriophage, was isolated from oysters from the west coast of South Korea. In this study, the complete genome of SSP002 was sequenced and analyzed for the first time among the V. vulnificus-specific bacteriophages.  相似文献   

7.
Accumulation and elimination of viral particles by hard clams, Mercenaria mercenaria, were studied with the coliphage S-13 as a working model. Escherichia coli uptake and elimination were simultaneously monitored. Clams were exposed to low levels of S-13 (7 particles/ml) in running seawater for several days, achieving titers in tissues from 2 to more than 1,000 times the levels to which they had been exposed. Bacterial accumulation (previously established by other workers) was comparable. Upon exposure to virus-free running water, clams polluted to relatively low levels (100 plaque-forming units/ml) eliminated most of their bacterial contaminants in 24 to 48 hr. Viral contaminants, however, persisted for several days to weeks even under ideal conditions for clam activity, provided that the temperature remained below the inactivation threshold for the virus. Most of the accumulated virus appeared to be sequestered in the digestive gland. These sequestered particles are refractory to those mechanisms responsible for elimination of bacterial contaminants. This discrepancy points out the need for caution in evaluating the efficiency of shellfish depuration processes, especially if only a bacterial criterion is used as a monitoring system.  相似文献   

8.
Viruses excreted by humans affect the commercial and recreational use of coastal water. Shellfish produced in contaminated waters have been linked to many episodes and outbreaks of viral gastroenteritis, as well as other food-borne diseases worldwide. The risk can be reduced by appropriate treatment following harvesting and by depuration. The kinetics of inactivation of murine norovirus 1 and human adenovirus 2 in natural and artificial seawater by free available chlorine was studied by quantifying genomic copies (GC) using quantitative PCR and infectious viral particles (PFU). Human JC polyomavirus Mad4 kinetics were evaluated by quantitative PCR. DNase or RNase were used to eliminate free genomes and assess potential viral infectivity when molecular detection was performed. At 30 min of assay, human adenovirus 2 showed 2.6- and 2.7-log(10) GC reductions and a 2.3- and 2.4-log(10) PFU reductions in natural and artificial seawater, respectively, and infectious viral particles were still observed at the end of the assay. When DNase was used prior to the nucleic acid extraction the kinetic of inactivation obtained by quantitative PCR was statistically equivalent to the one observed by infectivity assays. For murine norovirus 1, 2.5, and 3.5-log(10) GC reductions were observed in natural and artificial seawater, respectively, while no viruses remained infectious after 30 min of contact with chlorine. Regarding JC polyomavirus Mad4, 1.5- and 1.1-log(10) GC reductions were observed after 30 min of contact time. No infectivity assays were conducted for this virus. The results obtained provide data that might be applicable to seawater used in shellfish depuration.  相似文献   

9.
The survival and replication of male-specific bacteriophages in hard-shelled clams (Mercenaria mercenaria) and their homogenates were examined to further assess their potential utility as indicator organisms. Trials were conducted in the presence and absence of a suitable bacterial host, Escherichia coli HS[pFamp]R. Results of this study demonstrated that male-specific bacteriophages were unable to replicate in hard-shelled clams, with or without added host cells. In addition, the densities of these bacteriophages were stable for up to 7 days in shellfish held at ambient seawater temperatures (less than 25 degrees C). Evidence of replication, although not observed in live shellfish, was found to occur in temperature-abused shellfish homogenates and supernatants, but only when a suitable bacterial host was present.  相似文献   

10.
The survival and replication of male-specific bacteriophages in hard-shelled clams (Mercenaria mercenaria) and their homogenates were examined to further assess their potential utility as indicator organisms. Trials were conducted in the presence and absence of a suitable bacterial host, Escherichia coli HS[pFamp]R. Results of this study demonstrated that male-specific bacteriophages were unable to replicate in hard-shelled clams, with or without added host cells. In addition, the densities of these bacteriophages were stable for up to 7 days in shellfish held at ambient seawater temperatures (less than 25 degrees C). Evidence of replication, although not observed in live shellfish, was found to occur in temperature-abused shellfish homogenates and supernatants, but only when a suitable bacterial host was present.  相似文献   

11.
As filter-feeders, bivalve molluscs accumulate Vibrio into edible tissues. Consequently, an accurate assessment of depuration procedures and the characterization of the persistent Vibrio community in depurated shellfish represent a key issue to guarantee food safety in shellfish products. The present study investigated changes in the natural Vibrio community composition of the Ruditapes philippinarum microbiota with specific focus on human pathogenic species. For this purpose, the study proposed a MLSA-NGS approach (rRNA 16S, recA and pyrH) for the detection and identification of Vibrio species. Clam microbiota were analysed before and after depuration procedures performed in four depuration plants, using culture-dependent and independent approaches. Microbiological counts and NGS data revealed differences in terms of both contamination load and Vibrio community between depuration plants. The novel MLSA-NGS approach allowed for a clear definition of the Vibrio species specific to each depuration plant. Specifically, depurated clam microbiota showed presence of human pathogenic species. Ozone treatments and the density of clams in the depuration tank probably influenced the level of contamination and the Vibrio community composition. The composition of Vibrio community specific to each plant should be carefully evaluated during the risk assessment to guarantee a food-safe shellfish-product for the consumer.  相似文献   

12.
Within the country of Brazil, Santa Catarina is a major shellfish producer. Detection of viral contamination is an important step to ensure production quality and consumer safety during this process. In this study, we used a depuration system and ultraviolet (UV) disinfection to eliminate viral pathogens from artificially infected oysters and analysed the results. Specifically, the oysters were contaminated with hepatitis A virus (HAV) or human adenovirus type 5 (HAdV5). After viral infection, the oysters were placed into a depuration tank and harvested after 48, 72 and 96 h. After sampling, various oyster tissues were dissected and homogenised and the viruses were eluted with alkaline conditions and precipitated with polyethylene glycol. The oyster samples were evaluated by cell culture methods, as well as polymerase chain reaction (PCR) and quantitative-PCR. Moreover, at the end of the depuration period, the disinfected seawater was collected and analysed by PCR. The molecular assays showed that the HAdV5 genome was present in all of the depuration time samples, while the HAV genome was undetectable after 72 h of depuration. However, viral viability tests (integrated cell culture-PCR and immunofluorescence assay) indicated that both viruses were inactivated with 96 h of seawater recirculation. In conclusion, after 96 h of UV treatment, the depuration system studied in this work purified oysters that were artificially contaminated with HAdV5 and HAV.  相似文献   

13.
Viral Depuration by Assaying Individual Shellfish   总被引:3,自引:3,他引:0       下载免费PDF全文
A study was carried out to further evaluate the practicability of viral depuration by assaying individual shellfish. The Northern quahaug and a strain of the type 1 attenuated poliovirus were used as the working model. Two types of depuration systems were employed: the small experimental tanks and a pilot-size tank with a capacity of approximately 24 bushels (836 liters) of shellfish. Volumes of the individual shellfish samples were found uniform throughout the experiments when a prior selection for the weight of the shellfish was made. There was also no significant difference in volumes of the individual samples during the course of depuration (24 to 96 hr). Under controlled hydrographic conditions, however, the uptake of virus in individual shellfish varied considerably. In general, the individual variability reached 10- to 100-fold. This wide variation would explain the variability of viral contents obtained in pooled samples during depuration as reported previously. During a later phase of depuration, although a great majority of shellfish were free of the virus, a few still harbored minimal amounts of contaminants. The presence of virus in some of the shellfish after various periods of depuration would, theoretically, be obscured by the pooling of the sampled shellfish. Further examination of the negative samples by assaying larger quantities than those routinely used revealed that a few still contained virus. To simulate naturally polluted shellfish as closely as technically possible, shellfish were polluted with minimal amounts of virus. The shellfish were cleansed more rapidly by the depuration process than were those polluted with more virus. Since the naturally polluted shellfish were shown to contain less virus than those studied in the laboratory, it is anticipated that the former type of shellfish may be cleansed more readily by this process within a reasonable period of time. Justification for a field trial of depuration in this country is presented.  相似文献   

14.
Accumulation of poliovirus Lsc-2ab by West Coast oysters was determined by using a stationary seawater system, and depuration was determined by using both stationary and free-flow systems. Results indicate that these shellfish have the same pattern of accumulation and localization of viruses as do East Coast species. However, uptake appeared to occur more rapidly than described for East Coast shellfish. There appeared to be a gradual diffusion of virus from the digestive area into the body. Depuration was found to occur more rapidly and completely under free-flow conditions than in a stationary system.  相似文献   

15.
Phages lytic to Vibrio vulnificus were found in estuarine waters, sediments, plankton, crustacea, molluscan shellfish, and the intestines of finfish of the U.S. Gulf Coast, but no apparent relationship between densities of V. vulnificus and its phages was observed. Phage diversity and abundance in molluscan shellfish were much greater than in other habitats. V. vulnificus phages isolated from oysters did not lyse other mesophilic bacteria also isolated from oysters. Both V. vulnificus and its phages were found in a variety of oyster tissues and fluids with lowest densities in the hemolymph and mantle fluid. These findings suggest a close ecological relationship between V. vulnificus phages and molluscan shellfish.  相似文献   

16.
The eel and human pathogen Vibrio vulnificus serovar E (biotype 2) is seldom isolated from natural waters, although it can survive in sterilized artificial seawater microcosms for years. The main objective of the present study was to investigate whether aquatic microbiota can limit its survival and recovery from water samples. A set of preliminary experiments of survival in microcosms containing natural seawater and water from eel farms showed that the persistence of this pathogen was mainly controlled by grazing, and secondarily by bacterial competition. The bacterial competition was further analysed in artificial seawater microcosms co-inoculated with selected virulent serovar E (VSE) strains and potential competitors. Competitors included V. vulnificus biotype 1 isolates and strains of selected species that can grow on the selective media designed for V. vulnificus isolation from water samples. Evidences of bacterial competition that was detrimental for VSE recovery were recorded. Thus, some species produced a deleterious effect on VSE strains under starvation, and others were able to use the resources more efficiently under nutrient input. These results suggest that an overgrowth of more efficient competitor bacteria in conventional media used for isolation of V. vulnificus could mask the recovery of VSE strains and explain the scarcity of reports on the isolation of this human and eel pathogen from natural waters.  相似文献   

17.
The accumulation of low levels (0.002 to 0.18 PFU/ml) of both feces-associated and monodispersed poliovirus by oysters (Crassostrea virginica or C. gigas) and clams (Mercenaria mercenaria) was investigated. These levels were chosen to duplicate the conditions present in light to moderately polluted waters. Experiments were performed in both small- and large-scale flowing seawater systems, developed to mimic the natural marine habitats of shellfish. Under these experimental conditions, viral accumulation by physiologically active shellfish was only noted when water column concentrations exceeded approximately 0.01 PFU/ml. Bioaccumulation increased with increasing concentrations of both monodispersed and feces-associated viruses. At virus concentrations below this level, viruses were seldom detected in either clams or oysters. Evidence indicated that the lack of accumulation was not the result of inefficient extraction or detection methods. The modified Cat-Floc-beef extract procedure used in the experiment was found to be capable of detecting as few as 1.5 to 2.0 PFU per shellfish. Evidence is presented to indicate that an uptake-depuration equilibrium was present at virus exposure levels of 0.10 PFU/ml, but not at 0.01 PFU/ml. The results suggested that viral accumulation by shellfish may not be efficient at water column concentrations below congruent to 0.01 PFU/ml.  相似文献   

18.
Low levels of feces-associated natural virus, simulating virus numbers estimated to exist in moderately polluted shellfish-growing waters, were used to evaluate the effectiveness of depuration as a virus depletion procedure in soft-shell clams. Depuration effectiveness depended upon the numbers of virus bioaccumulated and whether virus was solids associated. Virus uptake was greatest when viruses were solids associated and pollution levels were equivalent or greater than those likely to be found in grossly polluted growing waters. Virtually all bioaccumulated feces-associated natural virus was deposited within either the hepatopancreas or siphon tissues. Viruses usually were eliminated within a 24- to 48-h depuration period. Dependence upon depuration of clams to elimate health hazards of virus etiology involved a risk factor not measureable in the study. The greatest reduction of health risks would come from the routine depuration of clams harvested from growing waters of good sanitary quality.  相似文献   

19.
Low levels of feces-associated natural virus, simulating virus numbers estimated to exist in moderately polluted shellfish-growing waters, were used to evaluate the effectiveness of depuration as a virus depletion procedure in soft-shell clams. Depuration effectiveness depended upon the numbers of virus bioaccumulated and whether virus was solids associated. Virus uptake was greatest when viruses were solids associated and pollution levels were equivalent or greater than those likely to be found in grossly polluted growing waters. Virtually all bioaccumulated feces-associated natural virus was deposited within either the hepatopancreas or siphon tissues. Viruses usually were eliminated within a 24- to 48-h depuration period. Dependence upon depuration of clams to elimate health hazards of virus etiology involved a risk factor not measureable in the study. The greatest reduction of health risks would come from the routine depuration of clams harvested from growing waters of good sanitary quality.  相似文献   

20.
The summer prevalence of Vibrio parahaemolyticus and other halophilic vibrios in seafood from Hong Kong markets was investigated. Halophilic vibrios were isolated from all seven types of seafood examined, and comprised 9.1%, 8% and 6.1% of contaminating aerobic heterotrophic bacteria from mussels, clams and oysters respectively. Sucrose-positive vibrios were more common than sucrose-negative varieties. Vibrio alginolyticus was the most frequently isolated species, followed by V. parahaemolyticus, V. harveyi, V. fluvialis, V. vulnificus, V. pelagius, V. campbellii, V. spendidus and V. marinus. Mussels contained the highest concentration of V. parahaemolyticus (4.6 x 10(4)/g); oysters and clams contained 3.4 x 10(4)/g and 6.5 x 10(3)/g respectively. The ubiquity and relatively high concentrations of V. parahaemolyticus and other pathogenic vibrios in shellfish is a potential public health hazard in Hong Kong and other subtropical Asian countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号