首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Aerotaxis is a particular form of "energy taxis". It is based on a largely elusive signal transduction machinery. In aerotaxis, oxygen dissolved in water plays the role of both attractant (at moderate concentrations) and repellent (at high and low concentrations). Cells swimming from favorable oxygen concentrations into regions with unfavorable concentrations increase the frequency of reversals, turn back into the favorable domain, and become effectively trapped there. At the same time, bacteria consume oxygen, creating an oxygen gradient. This behavior leads to a pattern formation phenomenon: bacteria self-organize into a dense band at a certain distance from the air-water interface. We incorporate experimental observations of the aerotactic bacterium, Azospirillum brasilense, into a mathematical model. The model consists of a system of differential equations describing swimming bacterial cells and diffusing oxygen. The cells' frequency of reversals depends on the concentration of oxygen and its time derivative while oxygen is depleted by the bacteria. We suggest a hypothetical model of energy sensing mediated by aerotactic receptors Aer and Tsr. Computer simulations and analysis of the model equations allow comparisons of theoretical and experimental results and provide insight into the mechanisms of bacterial pattern formation and underlying signal transduction machinery. We make testable predictions about position and density of the bacterial band.  相似文献   

2.
In this paper, we propose a new receptor-based model for pattern formation and regulation in a fresh-water polyp, namely hydra. The model is defined in the form of a system of reaction-diffusion equations with zero-flux boundary conditions coupled with a system of ordinary differential equations. The production of diffusible biochemical molecules has a hysteretic dependence on the density of these molecules and is modeled by additional ordinary differential equations. We study the hysteresis-driven mechanism of pattern formation and we demonstrate the advantages and constraints of its ability to explain different aspects of pattern formation and regulation in hydra. The properties of the model demonstrate a range of stationary and oscillatory spatially heterogeneous patterns, arising from multiple spatially homogeneous steady states and switches in the production rates.  相似文献   

3.
In this paper we present a numerical method for the bidomain model, which describes the electrical activity in the heart. The model consists of two partial differential equations (PDEs), which are coupled to systems of ordinary differential equations (ODEs) describing electrochemical reactions in the cardiac cells. Many applications require coupling these equations to a third PDE, describing the electrical fields in the torso surrounding the heart. The resulting system is challenging to solve numerically, because of its complexity and very strict resolution requirements in time and space. We propose a method based on operator splitting and a fully coupled discretization of the three PDEs. Numerical experiments show that for simple simulation cases and fine discretizations, the algorithm is second-order accurate in space and time.  相似文献   

4.
Continuous and discrete mathematical models of tumor-induced angiogenesis   总被引:24,自引:0,他引:24  
Angiogenesis, the formation of blood vessels from a pre-existing vasculature, is a process whereby capillary sprouts are formed in response to externally supplied chemical stimuli. The sprouts then grow and develop, driven initially by endothelial-cell migration, and organize themselves into a dendritic structure. Subsequent cell proliferation near the sprout tip permits further extension of the capillary and ultimately completes the process. Angiogenesis occurs during embryogenesis, wound healing, arthritis and during the growth of solid tumors. In this paper we present both continuous and discrete mathematical models which describe the formation of the capillary sprout network in response to chemical stimuli (tumor angiogenic factors, TAF) supplied by a solid tumor. The models also take into account essential endothelial cell-extracellular matrix interactions via the inclusion of the matrix macromolecule fibronectin. The continuous model consists of a system of nonlinear partial differential equations describing the initial migratory response of endothelial cells to the TAF and the fibronectin. Numerical simulations of the system, using parameter values based on experimental data, are presented and compared qualitatively with in vivo experiments. We then use a discretized form of the partial differential equations to develop a biased random-walk model which enables us to track individual endothelial cells at the sprout tips and incorporate anastomosis, mitosis and branching explicitly into the model. The theoretical capillary networks generated by computer simulations of the discrete model are compared with the morphology of capillary networks observed in in vivo experiments.  相似文献   

5.
A model for nerve cell pattern formation is proposed in this paper. The model is based on some experimental results and an assumption that there is a kind of inhibitive interaction between growing neurites on the same nerve cell. In this paper, this interaction is termed lateral inhibition. A group of ordinary differential equations are used to describe the elongation of the terminal neurite segments of individual nerve cells. Computer simulation and comparison of it with in vitro studies are also made in this paper.  相似文献   

6.
A mathematical model for describing the cancer growth dynamics in response to anticancer agents administration in xenograft models is discussed. The model consists of a system of ordinary differential equations involving five parameters (three for describing the untreated growth and two for describing the drug action). Tumor growth in untreated animals is modelled by an exponential growth followed by a linear growth. In treated animals, tumor growth rate is decreased by an additional factor proportional to both drug concentration and proliferating cells. The mathematical analysis conducted in this paper highlights several interesting properties of this tumor growth model. It suggests also effective strategies to design in vivo experiments in animals with potential saving of time and resources. For example, the drug concentration threshold for the tumor eradication, the delay between drug administration and tumor regression, and a time index that measures the efficacy of a treatment are derived and discussed. The model has already been employed in several drug discovery projects. Its application on a data set coming from one of these projects is discussed in this paper.  相似文献   

7.
A PDE Model for Imatinib-Treated Chronic Myelogenous Leukemia   总被引:1,自引:0,他引:1  
We derive a model for describing the dynamics of imatinib-treated chronic myelogenous leukemia (CML). This model is a continuous extension of the agent-based CML model of Roeder et al. (Nat. Med. 12(10), 1181–1184, 2006) and of its recent formulation as a system of difference equations (Kim et al. in Bull. Math. Biol. 70(3), 728–744, 2008). The new model is formulated as a system of partial differential equations that describe various stages of differentiation and maturation of normal hematopoietic cells and of leukemic cells. An imatinib treatment is also incorporated into the model. The simulations of the new PDE model are shown to qualitatively agree with the results that were obtained with the discrete-time (difference equation and agent-based) models. At the same time, for a quantitative agreement, it is necessary to adjust the values of certain parameters, such as the rates of imatinib-induced inhibition and degradation.  相似文献   

8.
The ability of cancer cells to break out of tissue compartments and invade locally gives solid tumours a defining deadly characteristic. One of the first steps of invasion is the remodelling of the surrounding tissue or extracellular matrix (ECM) and a major part of this process is the over-expression of proteolytic enzymes, such as the urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), by the cancer cells to break down ECM proteins. Degradation of the matrix enables the cancer cells to migrate through the tissue and subsequently to spread to secondary sites in the body, a process known as metastasis. In this paper we undertake an analysis of a mathematical model of cancer cell invasion of tissue, or ECM, which focuses on the role of the urokinase plasminogen activation system. The model consists of a system of five reaction-diffusion-taxis partial differential equations describing the interactions between cancer cells, uPA, uPA inhibitors, plasmin and the host tissue. Cancer cells react chemotactically and haptotactically to the spatio-temporal effects of the uPA system. The results obtained from computational simulations carried out on the model equations produce dynamic heterogeneous spatio-temporal solutions and using linear stability analysis we show that this is caused by a taxis-driven instability of a spatially homogeneous steady-state. Finally we consider the biological implications of the model results, draw parallels with clinical samples and laboratory based models of cancer cell invasion using three-dimensional invasion assay, and go on to discuss future development of the model.  相似文献   

9.
半干旱区春小麦生长系统的人工神经网络模型与产量预测   总被引:1,自引:0,他引:1  
以半干旱区春小麦生长系统为研究对象。探讨了作物生长系统中水分、土壤养分等生态因子的时空变化特征及春小麦产量形成机制,应用人工神经网络方法建立了半干旱区春小麦生长系统的产量随环境因子变化的神经网络模型,并与传统的CTM模型进行了比较。模拟结果表明,人工神经网络模型可适用于半干旱区春小麦生长系统产量随环境因子变化规律描述,且优于传统模型,从而为春小麦产量预测提供了新的途径,也为作物生态系统的人工调控提供了新的模式与定量依据。  相似文献   

10.
In the absence of sufficient combined nitrogen, some filamentous cyanobacteria differentiate nitrogen-fixing heterocysts at approximately every 10th cell position. As cells between heterocysts grow and divide, this initial pattern is maintained by the differentiation of a single cell approximately midway between existing heterocysts. This paper introduces a mathematical model for the maintenance of the periodic pattern of heterocysts differentiated by Anabaena sp. strain PCC 7120 based on the current experimental knowledge of the system. The model equations describe a non-diffusing activator (HetR) and two inhibitors (PatS and HetN) that undergo diffusion in a growing one-dimensional domain. The inhibitors in this model have distinct diffusion rates and temporal expression patterns. These unique aspects of the model reflect recent experimental findings regarding the molecular interactions that regulate patterning in Anabaena. Output from the model is in good agreement with both the temporal and spatial characteristics of the pattern maintenance process observed experimentally.  相似文献   

11.
The mechanism for cortical folding pattern formation is not fully understood. Current models represent scenarios that describe pattern formation through local interactions, and one recent model is the intermediate progenitor model. The intermediate progenitor (IP) model describes a local chemically driven scenario, where an increase in intermediate progenitor cells in the subventricular zone correlates to gyral formation. Here we present a mathematical model that uses features of the IP model and further captures global characteristics of cortical pattern formation. A prolate spheroidal surface is used to approximate the ventricular zone. Prolate spheroidal harmonics are applied to a Turing reaction-diffusion system, providing a chemically based framework for cortical folding. Our model reveals a direct correlation between pattern formation and the size and shape of the lateral ventricle. Additionally, placement and directionality of sulci and the relationship between domain scaling and cortical pattern elaboration are explained. The significance of this model is that it elucidates the consistency of cortical patterns among individuals within a species and addresses inter-species variability based on global characteristics and provides a critical piece to the puzzle of cortical pattern formation.  相似文献   

12.
A mathematical model describing the dynamical interactions of bidirectional associative memory networks involving transmission delays is considered. The influence of a dead zone or a zone of noactivation on the global stability is investigated and various easily verifiable sets of sufficient conditions are established. The asymptotic nature of solutions when the given system of equations does not possess an equilibrium pattern is discussed.  相似文献   

13.
This paper introduces a ‘hypothesis about the growth pattern of the secondary ossification centre (SOC)’, whereby two phases are assumed. First, the formation of cartilage canals as an event essential for the development of the SOC. Second, once the canals are merged in the central zone of the epiphysis, molecular factors are released (primarily Runx2 and MMP9) spreading and causing hypertrophy of adjacent cells. In addition, there are two important molecular factors in the epiphysis: PTHrP and Ihh. The first one inhibits chondrocyte hypertrophy and the second helps the cell proliferation. Between these factors, there is negative feedback, which generates a highly localised and stable pattern over time. From a mathematical point of view, this pattern is similar to the patterns of Turing. The spread of Runx2 hypertrophies the cells from the centre to the periphery of the epiphysis until found with high levels of PTHrP to inhibit hypertrophy. This mechanism produces the epiphyseal bone-plate. Moreover, the hypertrophy is inhibited when the cells sense low shear stress and high pressure levels that maintain the articular cartilage structure. To test this hypothesis, we solve a system of coupled partial differential equations using the finite element method and we have obtained spatio-temporal patterns of the growth process of the SOC. The model is in qualitative agreement with experimental results previously reported by other authors. Thus, we conclude that this model can be used as a methodological basis to present a complete mathematical model of the whole epiphyseal development.  相似文献   

14.
15.
Cells of the embryonic vertebrate limb in high-density culture undergo chondrogenic pattern formation, which results in the production of regularly spaced “islands” of cartilage similar to the cartilage primordia of the developing limb skeleton. The first step in this process, in vitro and in vivo, is the generation of “cell condensations,” in which the precartilage cells become more tightly packed at the sites at which cartilage will form. In this paper we describe a discrete, stochastic model for the behavior of limb bud precartilage mesenchymal cells in vitro. The model uses a biologically motivated reaction–diffusion process and cell-matrix adhesion (haptotaxis) as the bases of chondrogenic pattern formation, whereby the biochemically distinct condensing cells, as well as the size, number, and arrangement of the multicellular condensations, are generated in a self-organizing fashion. Improving on an earlier lattice-gas representation of the same process, it is multiscale (i.e., cell and molecular dynamics occur on distinct scales), and the cells are represented as spatially extended objects that can change their shape. The authors calibrate the model using experimental data and study sensitivity to changes in key parameters. The simulations have disclosed two distinct dynamic regimes for pattern self-organization involving transient or stationary inductive patterns of morphogens. The authors discuss these modes of pattern formation in relation to available experimental evidence for the in vitro system, as well as their implications for understanding limb skeletal patterning during embryonic development.  相似文献   

16.
A method of estimating effectiveness factor for immobilized whole cells is developed by considering microbial cells as microspheres containing enzyme activity dispersed in the gel phase of the support matrix. The proper model equations describing the system are solved and the corresponding effectiveness factors calculated for various bead sizes, and numbers and activities of cells. The cell wall resistance (permeability) is found to be one of most important variables in the system. The model is applied in predicting the experimental data of other investigators.  相似文献   

17.
Spontaneous pattern formation may arise in biological systems as primary and secondary bifurcations to nonlinear parabolic partial differential equations describing chemical reaction-diffusion systems subject to zero flux boundary conditions. Prepatterns are investigated, which arise in the three dimensional region of a prolate spheroid (elongated sphere). Pattern sequences and selection rules are established numerically. The results confirm previously recorded results of the spherical region upon which a prepattern theory of mitosis and cytokinesis is based. New results described here establish the emerging patterns as reliable prepatterns ensuring bipolarity during elongation of biological cells, as seen in anaphase of the process of mitosis.  相似文献   

18.
We develop a model for describing the dynamics of imatinib-treated chronic myelogenous leukemia. Our model is based on replacing the recent agent-based model of Roeder et al. (Nat. Med. 12(10):1181–1184, 2006) by a system of deterministic difference equations. These difference equations describe the time-evolution of clusters of individual agents that are grouped by discretizing the state space. Hence, unlike standard agent-base models, the complexity of our model is independent of the number of agents, which allows to conduct simulation studies with a realistic number of cells. This approach also allows to directly evaluate the expected steady states of the system. The results of our numerical simulations show that our model replicates the averaged behavior of the original Roeder model with a significantly reduced computational cost. Our general approach can be used to simplify other similar agent-based models. In particular, due to the reduced computational complexity of our technique, one can use it to conduct sensitivity studies of the parameters in large agent-based systems.  相似文献   

19.
Inhibition of protein synthesis by cycloheximide blocks subsequent division of a mammalian cell, but only if the cell is exposed to the drug before the "restriction point" (i.e. within the first several hours after birth). If exposed to cycloheximide after the restriction point, a cell proceeds with DNA synthesis, mitosis and cell division and halts in the next cell cycle. If cycloheximide is later removed from the culture medium, treated cells will return to the division cycle, showing a complex pattern of division times post-treatment, as first measured by Zetterberg and colleagues. We simulate these physiological responses of mammalian cells to transient inhibition of growth, using a set of nonlinear differential equations based on a realistic model of the molecular events underlying progression through the cell cycle. The model relies on our earlier work on the regulation of cyclin-dependent protein kinases during the cell division cycle of yeast. The yeast model is supplemented with equations describing the effects of retinoblastoma protein on cell growth and the synthesis of cyclins A and E, and with a primitive representation of the signaling pathway that controls synthesis of cyclin D.  相似文献   

20.
In the absence of sufficient combined nitrogen, some filamentous cyanobacteria differentiate nitrogen-fixing heterocysts at approximately every 10th cell position. As cells between heterocysts grow and divide, this initial pattern is maintained by the differentiation of a single cell approximately midway between existing heterocysts. This paper introduces a mathematical model for the maintenance of the periodic pattern of heterocysts differentiated by Anabaena sp. strain PCC 7120 based on the current experimental knowledge of the system. The model equations describe a non-diffusing activator (HetR) and two inhibitors (PatS and HetN) that undergo diffusion in a growing one-dimensional domain. The inhibitors in this model have distinct diffusion rates and temporal expression patterns. These unique aspects of the model reflect recent experimental findings regarding the molecular interactions that regulate patterning in Anabaena. Output from the model is in good agreement with both the temporal and spatial characteristics of the pattern maintenance process observed experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号