首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As populations age, the prevalence of geriatric neurodegenerative diseases will increase. These diseases generally are multifactorial, arising from complex interactions among genes, environment, concurrent morbidities,treatments, and time. This essay provides a concept for the pathogenesis of Lewy body diseases such as Parkinson disease, by considering them in the context of allostasis and allostatic load. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple,interacting effectors regulated by homeostatic comparators—"homeostats". Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. "Allostatic load" refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of an idling car, the revolutions per minute of the engine can be maintained at any of a variety of levels (allostatic states).Just as allostatic load (cumulative wear and tear) reflects design and manufacturing variations, byproducts of combustion,and time, eventually leading to engine breakdown,allostatic load in catecholaminergic neurons might eventually lead to Lewy body diseases. Central to the argument is that catecholaminergic neurons leak vesicular contents into the cytoplasm continuously during life and that catecholaminesin the neuronal cytoplasm are autotoxic. These neurons therefore depend on vesicular sequestration to limit autotoxicity of cytosolic transmitter. Parkinson disease might be a disease of the elderly because of allostatic load, which depends on genetic predispositions,environmental exposures, repeated stress-related catecholamine release, and time.  相似文献   

2.
Borsook D  Maleki N  Becerra L  McEwen B 《Neuron》2012,73(2):219-234
The brain and body respond to potential and actual stressful events by activating hormonal and neural mediators and modifying behaviors to adapt. Such responses help maintain physiological stability ("allostasis"). When behavioral or physiological stressors are frequent and/or severe, allostatic responses can become dysregulated and maladaptive ("allostatic load"). Allostatic load may alter brain networks both functionally and structurally. As a result, the brain's responses to continued/subsequent stressors are abnormal, and behavior and systemic physiology are altered in ways that can, in a vicious cycle, lead to further allostatic load. Migraine patients are continually exposed to such stressors, resulting in changes to central and peripheral physiology and function. Here we review how changes in brain states that occur as a result of repeated migraines may be explained by a maladaptive feedforward allostatic cascade model and how understanding migraine within the context of allostatic load model suggests alternative treatments for this often-debilitating disease.  相似文献   

3.
The concept of allostasis in biology and biomedicine   总被引:18,自引:0,他引:18  
Living organisms have regular patterns and routines that involve obtaining food and carrying out life history stages such as breeding, migrating, molting, and hibernating. The acquisition, utilization, and storage of energy reserves (and other resources) are critical to lifetime reproductive success. There are also responses to predictable changes, e.g., seasonal, and unpredictable challenges, i.e., storms and natural disasters. Social organization in many populations provides advantages through cooperation in providing basic necessities and beneficial social support. But there are disadvantages owing to conflict in social hierarchies and competition for resources. Here we discuss the concept of allostasis, maintaining stability through change, as a fundamental process through which organisms actively adjust to both predictable and unpredictable events. Allostatic load refers to the cumulative cost to the body of allostasis, with allostatic overload being a state in which serious pathophysiology can occur. Using the balance between energy input and expenditure as the basis for applying the concept of allostasis, we propose two types of allostatic overload. Type 1 allostatic overload occurs when energy demand exceeds supply, resulting in activation of the emergency life history stage. This serves to direct the animal away from normal life history stages into a survival mode that decreases allostatic load and regains positive energy balance. The normal life cycle can be resumed when the perturbation passes. Type 2 allostatic overload begins when there is sufficient or even excess energy consumption accompanied by social conflict and other types of social dysfunction. The latter is the case in human society and certain situations affecting animals in captivity. In all cases, secretion of glucocorticosteroids and activity of other mediators of allostasis such as the autonomic nervous system, CNS neurotransmitters, and inflammatory cytokines wax and wane with allostatic load. If allostatic load is chronically high, then pathologies develop. Type 2 allostatic overload does not trigger an escape response, and can only be counteracted through learning and changes in the social structure.  相似文献   

4.
Cooperation and social support are the major advantages of living in social groups. However, there are also disadvantages arising from social conflict and competition. Social conflicts may increase allostatic load, which is reflected in increased concentrations of glucocorticoids. We applied the emerging concept of allostasis to investigate the relation between social status and glucocorticoid concentrations. Animals in a society experience different levels of allostatic load and these differences may predict relative glucocorticoid concentrations of dominant and subordinate individuals. We reviewed the available data from free-ranging animals and generated, for each sex separately, phylogenetic independent contrasts of allostatic load and relative glucocorticoid concentrations. Our results suggest that the relative allostatic load of social status predicts whether dominants or subordinates express higher or lower concentrations of glucocorticoids. There was a significant correlation between allostatic load of dominance and relative glucocorticoid concentrations in both females and males. When allostatic load was higher in dominants than in subordinates, dominants expressed higher levels of glucocorticoids; when allostatic load was similar in dominants and subordinates, there were only minor differences in glucocorticoid concentrations; and when allostatic load was lower in dominants than in subordinates, subordinates expressed higher levels of glucocorticoids than dominants. To our knowledge, this is the first model that consistently explains rank differences in glucocorticoid concentrations of different species and sexes. The heuristic concept of allostasis thus provides a testable framework for future studies of how social status is reflected in glucocorticoid concentrations.  相似文献   

5.
The allostatic load model describes how individuals maintain homeostasis in challenging environment and posits that costs induced by a chronic perturbation (i.e., allostatic load) are correlated to the secretion of glucocorticoids, such as corticosterone. Habitat perturbations from anthropogenic activities are multiple and functional responses to those are still unclear. Here, we manipulated the habitat quality in 24 semi-natural populations of the common lizard during 1 year. We tested the predictions of the allostatic load model that habitat degradation should increase baseline corticosterone levels, and should induce concomitant physiological changes, such as lipid mobilization and lower immunocompetence, and demographic changes, such as lower body growth, survival and/or reproductive performances. Our results highlight stage-dependent effects of habitat degradation on physiological traits during the breeding season: adult lizards had higher baseline corticosterone levels and yearling lizards had a lower inflammatory response than adults, whereas juveniles had higher circulating lipid levels than yearlings and adults without concomitant change in corticosterone levels. In addition, habitat degradation reduced the performances of adults but not of juveniles: in low habitat quality populations, adult males had a lower survival and females had a smaller fecundity. These results are in accordance with the allostatic load model given that allostatic load was detected only during the season and in life stages of maximal energy expenditure. This underlines the importance to account for individual energy requirements to better understand demographic responses to habitat perturbation.  相似文献   

6.
Multiple neurochemical mechanisms (neurotransmitters, regulatory peptides, neurotrophic growth factors, and proteins of the signaling transducer systems) maintain the integrity of nerve cell circuits, facilitate the responses to environmental demands and promote the recovery of a function after injury. The recent application of modern approaches of molecular and cellular biology to the problem of "diseased (bad) brain" reveals a remarkable capacity within brain cells for adaptation to aging and resistance to a disease. The death of neurons in different neurological disorders involves apoptotic biochemical cascades leading to mitochondrial alterations, upstream pro-apoptotic effectors, and caspases activation. At the cellular level, neuronal apoptosis in ischemic and neurodegenerative disorders may be triggered by oxidative stress, mitochondrial compromise and disruption of calcium homeostasis. Both genetic and environmental factors, and the aging process itself, contribute to initiation of such neuronal apoptosis. Neuroprotective (antiapoptotic) signal pathways involving neurotrophic factors, neuropeptides, and mediators able to counteract with effects of aging and genetic predisposition in experimental models and clinical events of neuro-destructive disorders.  相似文献   

7.
Allostatic load is a commonly used metric of health risk based on the hypothesis that recurrent exposure to environmental demands (e.g., stress) engenders a progressive dysregulation of multiple physiological systems. Prominent indicators of response to environmental challenges, such as stress-related hormones, sympatho-vagal balance, or inflammatory cytokines, comprise primary allostatic mediators. Secondary mediators reflect ensuing biological alterations that accumulate over time and confer risk for clinical disease but overlap substantially with a second metric of health risk, the metabolic syndrome. Whether allostatic load mediators covary and thus warrant treatment as a unitary construct remains to be established and, in particular, the relation of allostatic load parameters to the metabolic syndrome requires elucidation. Here, we employ confirmatory factor analysis to test: 1) whether a single common factor underlies variation in physiological systems associated with allostatic load; and 2) whether allostatic load parameters continue to load on a single common factor if a second factor representing the metabolic syndrome is also modeled. Participants were 645 adults from Allegheny County, PA (30–54 years old, 82% non-Hispanic white, 52% female) who were free of confounding medications. Model fitting supported a single, second-order factor underlying variance in the allostatic load components available in this study (metabolic, inflammatory and vagal measures). Further, this common factor reflecting covariation among allostatic load components persisted when a latent factor representing metabolic syndrome facets was conjointly modeled. Overall, this study provides novel evidence that the modeled allostatic load components do share common variance as hypothesized. Moreover, the common variance suggests the existence of statistical coherence above and beyond that attributable to the metabolic syndrome.  相似文献   

8.
Summary 1. The hippocampus is an important brain structure for working and spatial memory in animals and humans, and it is also a vulnerable as well as plastic brain structure as far as sensitivity to epilepsy, ischemia, head trauma, stress, and aging.2. The hippocampus is also a target brain area for the actions of hormones of the steroid/thyroid hormone family, which traditionally have been thought to work by regulating gene expression. Genomic actions of steroid hormones involve intracellular receptors, whereas nongenomic effects of steroids involve putative cell surface receptors. Although this distinction is valid, it does not go far enough in addressing the variety of mechanisms that steroid hormones use to produce their effects on cells. This is because cell surface receptors may signal changes in gene expression, while genomic actions sometimes affect neuronal excitability, often doing so quite rapidly.3. Moreover, steroid hormones and neurotransmitters may operate together to produce effects, and sometimes these effects involve collaborations between groups of neurons. For example, a number of steroid actions in the hippocampus involve the coparticipation of excitatory amino acids. These interactions are evident for the regulation of synaptogenesis by estradiol in the CA1 pyramidal neurons of hippocampus and for the induction of dendritic atrophy of CA3 neurons by repeated stress as well as by glucocorticoid injections. In addition, neurogenesis in the adult and developing dentate gyrus is contained by adrenal steroids as well as by excitatory amino acids. In each of these three examples, NMDA receptors are involved.4. These results not only point to a high degree of interdependency between certain neurotransmitters and the actions of steroid hormones, but also emphasize the degree to which structural plasticity is an important aspect of steroid hormone action in the adult as well as developing nervous system.  相似文献   

9.
Leptin: a diverse regulator of neuronal function   总被引:5,自引:0,他引:5  
It is well documented that leptin is a circulating hormone that plays a key role in regulating food intake and body weight via its actions on specific hypothalamic nuclei. However, leptin receptors are widely expressed in the CNS, in regions not generally associated with energy homeostasis, such as the hippocampus, cortex and cerebellum. Moreover, evidence is accumulating that leptin has widespread actions in the brain. In particular, recent studies have demonstrated that leptin markedly influences the excitability of hippocampal neurons via its ability to activate large conductance Ca(2+)-activated K(+) (BK) channels, and also to promote long-term depression of excitatory synaptic transmission. Here, we review the evidence supporting a role for this hormone in regulating hippocampal excitability.  相似文献   

10.
Appetitive instrumental conditioned reflexes on light (CS+) were formed in six cats by the method of "active choice" of quality of reinforcement; bread-meat mixture was given after short-delay conditioned bar-press responses, and the delayed responses were rewarded by meat. The animals differed in choice behavior strategy: "self-control", "ambivalent", "impulsive". The multiunit activity in the frontal cortex and hippocampus (CA3) was recorded. Cross-correlation analysis was used for estimation of correlation of activities in neuronal pairs in the frontal cortex and hippocampus (distributed frontal-hippocampal networks) and pairs within the same structure (frontal and hippocampal local neuronal networks). It was shown that the number of cross-correlations between the discharges of neurons both in the local and distributed networks was significantly higher in "self-control" cats. Under conditions of systemic administration of antagonists of muscarinic central cholinoreceptors (trihexyphenidyl and scopolamine), the bar-press conditioning impaired, the number of direct interneuronal connections decreased, and the number of externally synchronized correlations ("common input") significantly increased. The results suggest that the local and distributed neural networks of the frontal cortex and hippocampus are involved in the system of brain structures that determine the behavioral strategy of "self control".  相似文献   

11.
Stress concept substantially evolved since its creation by Hans Selye in 1936. New definitions of the stress were suggested. The knowledge of the stress mechanisms and mediators was widened. The changes in genes activities were included in the list of participants of the stress response along with the hormones, neurotransmitters and tissue factors. "Nonspecificity" of the stress response mechanisms was defined more exactly, especially concerning their neuronal parts. The stress theory was enriched by the idea of "allostasis". Stress concept and the discussions on it stimulated investigation of molecular-genetic mechanisms of the organisms' defensive reactions, and this concept still retain its significance for modem biomedical sciences.  相似文献   

12.
1. Aim: In Alzheimer's disease (AD) it is well known that specific regions of the brain are particularly vulnerable to the pathologic insults of the disease. In particular, the hippocampus is affected very early in the disease and by end stage AD is ravaged by neurofibrillary tangles and senile plaques (i.e., the pathologic hallmarks of AD). Throughout the past several years our laboratory has sought to determine the molecular mechanisms underlying the selective vulnerability of neurons in AD.2. Methods: To this end, we employed immunohistochemical, biochemical, and in situ hybrization methods to examine glutamate and -aminobutyric acid (GABAA) receptor subtypes in the hippocampus of patients displaying the full spectrum of AD pathology.3. Results: Despite the fact that the hippocampus is characterized by a marked loss of neurons in the late stages of the disease, our data demonstrate a rather remarkable preservation among some glutamate and GABAA receptor subtypes.4. Conclusions: Collectively, our data support the view that the relatively constant levels of selected receptor subtypes represent a compensatory up-regulation of these receptors subunits in surviving neurons. The demonstration that glutamate and GABA receptor subunits are comparably unaffected implies that even in the terminal stages of the disease the brain is attempting to maintain a balance in excitatory and inhibitory tone. Our data also support the concept that receptor subunits are differentially affected in AD with some subunits displaying no change while others display alterations in protein and mRNA levels within selected regions of the hippocampus. Although many of these changes are modest, they do suggest that the subunit composition of these receptors may be altered and hence affect the pharmacokinetic and physiological properties of the receptor. The latter findings stress the importance of understanding the subunit composition of individual glutamate/GABA receptors in the diseased brain prior to the development of drugs targeted towards those receptors.  相似文献   

13.
It has become customary to distinguish between so-called "genomic" actions of steroid hormones involving intracellular receptors and "non-genomic" effects of steroids that involve putative cell surface receptors. Whereas there is no doubt that this distinction has considerable validity, it does not go far enough in addressing the variety of mechanisms that steroid hormones use to produce their effects on cells. This is because cell surface receptors may signal changes in gene expression, while genomic actions sometimes affect neuronal excitability, often doing so quite rapidly. Moreover, steroid hormones and neurotransmitters may operate together to produce effects, and sometimes these effects involve collaborations between groups of neurons. As illustrations. evidence is reviewed in this article that a number of steroid actions in the hippocampus involves the co-participation of excitatory amino acids. These interactions are evident for the regulation of synaptogenesis by estradiol in the CA1 pyramidal neurons or hippocampus and for the induction of dendritic atrophy of CA3 neurons by repeated stress as well as by glucocorticoid injections. In addition, neurogenesis in the adult and developing dentate gyrus is "contained" by adrenal steroids as well as by excitatory amino acids. In each of these three examples, NMDA receptors are involved. These results not only point to a high degree of interdependency between certain neurotransmitters and the actions of steroid hormones but also emphasize the degree to which structural plasticity is an important aspect of steroid hormone action in the adult as well as developing nervous system.  相似文献   

14.
A Inui 《FASEB journal》2000,14(14):2158-2170
Recently novel molecular mediators and regulatory pathways for feeding and body weight regulation have been identified in the brain and the periphery. Mice lacking or overexpressing these mediators or receptors have been produced by molecular genetic techniques, and observations on mutant mice have shed new light on the role of each element in the homeostatic loop of body weight regulation. However, the interpretation of the phenotype is under the potential influence of developmental compensation and other genetic and environmental confounds. Specific alterations of the mediators and the consequences of the altered expression patterns are reviewed here and discussed in the context of their functions as suggested from conventional pharmacological studies. Advanced gene targeting strategies in which genes can be turned on or off at desired tissues and times would undoubtedly lead to a better understanding of the highly integrated and redundant systems for energy homeostasis equation.  相似文献   

15.
The relationship between chronic stress and chronic disease (including mental illness) is well established: HPA-axis hyperactivity leads to hormonal dysregulation of primary mediators (eg, glucocorticoids, cytokines, etc.), allostatic overload, and neurological degradation, followed by clinical manifestations of disease. Amid the largest public health crisis of the century lay a myriad of challenges pushing people beyond their limit. From experiencing loss of connection or dealing with loss of life to financial shocks of COVID-19 lockdowns or infection by the SARS-CoV-2 virus, stress is at an all-time high, threatening both brain and mental health at scale. Fortunately, there is a way forward: the neuroscience of resilience teaches us that it is possible to resist, recover, and redirect the brain from trauma to re-establish balance in the body and improve well-being. At the same time, health follows a social gradient: adverse and protective psychosocial factors are shaped by wider social and economic determinants of health. This paper argues the neurobiology of stress is not separate from health disparities linked to adverse factors (ie, stress) created by complex social and economic contexts. Therefore, the field of neuroscience is challenged to inform multi-context and multi-level approaches and engage with decision-makers to enact policies and interventions aimed at promoting the resilient element in a wider population health context. Undoubtedly, achieving such a goal for current and future generations to benefit and lead healthier lives requires a heroic effort from all key stakeholders. The cost of willful neglect to resolve these issues is too expensive.  相似文献   

16.
Although glycine receptors are found in most areas of the brain, including the hippocampus, their functional significance remains largely unknown. In the present study, we have investigated the role of presynaptic glycine receptors on excitatory nerve terminals in spontaneous glutamatergic transmission. Spontaneous EPSCs (sEPSCs) were recorded in mechanically dissociated rat dentate hilar neurons attached with native presynaptic nerve terminals using a conventional whole-cell patch recording technique under voltage-clamp conditions. Exogenously applied glycine or taurine significantly increased the frequency of sEPSCs in a concentration-dependent manner. This facilitatory effect of glycine was blocked by 1 μM strychnine, a specific glycine receptor antagonist, but was not affected by 30 μM picrotoxin. In addition, Zn2+ (10 μM) potentiated the glycine action on sEPSC frequency. Pharmacological data suggested that the activation of presynaptic glycine receptors directly depolarizes glutamatergic terminals resulting in the facilitation of spontaneous glutamate release. Bumetanide (10 μM), a specific Na-K-2C co-transporter blocker, gradually attenuated the glycine-induced sEPSC facilitation, suggesting that the depolarizing action of presynaptic glycine receptors was due to a higher intraterminal Cl concentration. The present results suggest that presynaptic glycine receptors on excitatory nerve terminals might play an important role in the excitability of the dentate gyrus-hilus-CA3 network in physiological and/or pathological conditions.  相似文献   

17.
At excitatory synapses in the brain, glutamate released from nerve terminals binds to glutamate receptors to mediate signaling between neurons. Glutamate receptors expressed in heterologous cells show ion channel activity. Recently, native glutamate receptors were shown to contain auxiliary subunits that modulate the trafficking and/or channel properties. The AMPA receptor (AMPAR) can contain TARP and CNIHs as the auxiliary subunits, whereas kainate receptor (KAR) can contain the Neto auxiliary subunit. Each of these auxiliary subunits uniquely modulates the glutamate receptors, and determines properties of native glutamate receptors. A thorough elucidation of the properties of native glutamate receptor complexes is indispensable for the understanding of the molecular machinery that regulates glutamate receptors and excitatory synaptic transmission in the brain.  相似文献   

18.
T-cell ontogenesis has been disclosed to depend on the interactions of thymus with endocrine glands and nervous system as follows: i/ Thymic deprivation not only impaired the immunological development but also brought about the dysgenesis of pituitary anterior lobe. Conversely, hypophysectomy resulted in thymus atrophy with the disturbed immune responses. ii/ Binding of pituitary acidophilic cell hormones to their receptors on thymus epithelial cells (TECs) augmented the release of thymic hormonal peptides (THPs) in vitro. iii/ Elevation of blood glucocorticoid level after stress caused atrophy of thymus cortex through double positive thymocyte apoptosis. Morpho-molecular alterations of cytoplasm preceded nuclear damage in the apoptotic thymocytes. iv/ Administration of thymosin to the streptozotocin-induced diabetic mice repressed mononuclear cell infiltration to the pancreatic islets. v/ Autonomic nerve fibers innervate thymic parenchyma. Binding of acetylcholines (Achs) to Ach receptors on TECs enhanced protein synthetic activity which seemed to connect with THP production. vi/ Thymectomy not only depressed the immune responses but also accelerated the reduction of leaming and memory ability with aging. The operation appears to disturb the brain adrenoceptor functions and to suppress the regulatory roles of hypothalamus to other nervous tissues. vii/ Several kinds of THPs, separated from the culture supernatant of TEC line by high performance liquid chromatography, showed a favorable effect on the thymocytes at different stage of differentiation and maturation. viii/ Thymosin, thymulin and THPs were capable of proliferating and differentiating thymocytes in vitro. However, the administration of each thymic product to the thymus-deprived animals could not restore from their "wasting disease". Since TECs are composed of a heterogeneous population, it would be one of essential ways for isolating "true thymus hormone" (TTH) to use the material which consists of functionally homogeneous subset of TECs. ix/ An additional grafting of pituitary gland to the thymus-grafted nude mice improved the disturbed T-cell ontogeny. Accordingly, the administration of "TTH" and pituitary acidophilic cell hormones might be more hopeful procedure for rescuing the thymus-deprived animals from "wasting disease".  相似文献   

19.
Mineralocorticoid receptors (MRs) in neurons of the anterior hypothalamus and the periventricular brain regions mediate aldosterone-selective actions on sodium hemeostasis, salt appetite and cardiovascular regulation. Corticosterone is not effective in these neurons, possibly because it is enzymatically inactivated. However, MRs in limbic brain regions, notably in the hippocampal neurons, do already respond to very low concentrations of both corticosterone and aldosterone. The MR-mediated effects stabilize neuronal transmission and appear critical for neuronal integrity of a sub-region of the hippocampus: the dentate gyrus. Higher concentrations of corticosterone induced by stress and the circadian rise progressively activate the lower affinity glucocorticoid receptors (GRs), which in coordination with MR-mediated actions then facilitate adaptive processes required for recovery of homeostasis. It is postulated that this balanced MR- and GR-mediated action of corticosterone is of critical importance for regulation of the stress response and behavioural adaptation.  相似文献   

20.
This study was designed to determine in rats whether morphine-3-glucuronide (M3G) produces its neuro-excitatory effects most potently in the ventral hippocampus (as has been reported previously for subanalgesic doses of opioid peptides). Guide cannulae were implanted into one of seven regions of the rat brain: lateral ventricle; ventral, CA1 and CA2-CA3 regions of the hippocampus; amygdala; striatum or cortex. After a 7 day recovery period, rats received intracerebral injections of (i) M3G (1.1 or 11 nmol) (ii) DADLE ([D-Ala2,D-Leu5]enkephalin), (45 nmol, positive controls) or (iii) vehicle (deionised water), and behavioral excitation was quantified over 80 min. High-dose M3G (11 nmol) evoked behavioral excitation in all brain regions but the onset, severity and duration of these effects varied considerably among brain regions. By contrast, low-dose M3G (1.1 nmol) evoked excitatory behaviors only when administered into the ventral hippocampus and the amygdala, with the most potent effects being observed in the ventral hippocampus. Prior administration of the nonselective opioid antagonists, naloxone and beta-funaltrexamine into the ventral hippocampus, markedly attenuated low-dose M3G's excitatory effects but did not significantly alter levels of excitation evoked by high-dose M3G. Naloxone given 10 min after M3G (1.1 or 11 nmol) did not significantly attenuate behavioral excitation. Thus, M3G's excitatory behavioral effects occur most potently in the ventral hippocampus as reported previously for subanalgesic doses of opioid peptides, and appear to be mediated through at least two mechanisms, one possibly involving excitatory opioid receptors and the other, non-opioid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号