首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Penguins are a monophyletic group in which many species are found breeding sympatrically, raising questions regarding how these species coexist successfully. Here, the isotopic niche of three sympatric pygoscelid penguin species was investigated at Powell Island, South Orkney Islands, during two breeding seasons (austral summers 2013–2014 and 2015–2016). Measurements of carbon (δ13C) and nitrogen (δ15N) stable isotope ratios were obtained from blood (adults) or feather (chicks) samples collected from Adélie Pygoscelis adeliae, chinstrap P. antarctica, and gentoo P. papua penguins. Isotopic niche regions (a proxy for the realized trophic niches) were computed to provide estimates of the trophic niche width of the studied species during the breeding season. The isotopic niche regions of adults of all three species were similar, but gentoo chicks had noticeably wider isotopic niches than the chicks of the other two species. Moderate to strong overlap in isotopic niche among species was found during each breeding season and for both age groups, suggesting that the potential for competition for shared food sources was similar during the two study years, although the actual level of competition could not be determined owing to the lack of data on resource abundance. Clear interannual shifts in isotopic niche were seen in all three species, though of lower amplitude for adult chinstrap penguins. These shifts were due to variation in carbon, but not nitrogen, isotopic ratios, which could indicate either a change in isotopic signature of their prey or a switch to an alternative food web. The main conclusions of this study are that (1) there is a partial overlap in the isotopic niches of these three congeneric species and that (2) they responded similarly to changes that likely occurred at the base of their food chain between the 2 years of the study.  相似文献   

3.
Biological invasions threaten global biodiversity and natural resources. Anticipating future invasions is central to strategies for combating the spread of invasive species. Ecological niche models are thus increasingly used to predict potential distribution of invasive species. In this study, we compare ecological niches of Rhododendron ponticum in its native (Iberian Peninsula) and invasive (Britain) ranges. Here, we test the conservation of ecological niche between invasive and native populations of R. ponticum using principal component analysis, niche dynamics analysis, and MaxEnt‐based reciprocal niche modeling. We show that niche overlap between native and invasive populations is very low, leading us to the conclusion that the two niches are not equivalent and are dissimilar. We conclude that R. ponticum occupies novel environmental conditions in Britain. However, the evidence of niche shift presented in this study should be treated with caution because of nonanalogue climatic conditions between native and invasive ranges and a small population size in the native range. We then frame our results in the context of contradicting genetic evidence on possible hybridization of this invasive species in Britain. We argue that the existing contradictory studies on whether hybridization caused niche shift in R. ponticum are not sufficient to prove or disprove this hypothesis. However, we present a series of theoretical arguments which indicate that hybridization is a likely cause of the observed niche expansion of R. ponticum in Britain.  相似文献   

4.
Tubastraea tagusensis, a coral native to the Galapagos Archipelago, has successfully established and invaded the Brazilian coast where it modifies native tropical rocky shore and coral reef communities. In order to understand the processes underlying the establishment of T. tagusensis, we tested whether Maxent, a tool for species distribution modeling, based on the native range of T. tagusensis correctly forecasted the invasion range of this species in Brazil. The Maxent algorithm was unable to predict the Brazilian coast as a suitable environment for the establishment of T. tagusensis. A comparison between these models and a principal component analysis (PCA) allowed us to examine the environmental dissimilarity between the two occupied regions (native and invaded) and to assess the species' occupied niche breadth. According to the PCA results, lower levels of chlorophyll‐a and nitrate on the Atlantic coast segregate the Brazilian and Galapagos environments, implying that T. tagusensis may have expanded its realized niche during the invasion process. We tested the possible realized niche expansion in T. tagusensis by assuming that Tubastraea spp. have similar fundamental niches, which was supported by exploring the environmental space of T. coccinea, a tropical‐cosmopolitan congener of T. tagusensis. We believe that the usage of Maxent should be treated with caution, especially when applied to biological invasion (or climate change) scenarios where the target species has a highly localized native (original) distribution, which may represent only a small portion of its fundamental niche, and therefore a violation of a SDM assumption.  相似文献   

5.
6.
7.
Foraging niche separation may be a mechanism to promote coexistence of two competing species by concentrating intraspecific competition relative to interspecific competition. The present study investigated foraging behaviour and microhabitat use of two coexisting species of invasive social wasps, Vespula germanica and Vespula vulgaris, when foraging for two different food resources. Also, we tested the attractiveness of traps baited with a synthetic lure for those two species. We found that V. germanica wasps prefer to forage at ground level regardless of the resource, while V. vulgaris prefers protein resources at the shrubland level given a choice between a protein bait at ground or at shrubland level. However, when baited with the synthetic lure, the species caught was not affected by the height at which traps were placed. That is, in a no choice scenario, the traps were sufficiently attractive to lure both species of wasps to both microhabitats (ground and shrubland levels). Thus, our results support the existence of spatial niche differentiation at least in protein foraging and suggest that the synthetic lure evaluated could be used to trap both species of Vespula wasps present in Argentina. These results could help to improve management strategies of these social wasps in an invaded area.  相似文献   

8.
Invasive species can encounter environments different from their source populations, which may trigger rapid adaptive changes after introduction (niche shift hypothesis). To test this hypothesis, we investigated whether postintroduction evolution is correlated with contrasting environmental conditions between the European invasive and source ranges in the Asian tiger mosquito Aedes albopictus. The comparison of environmental niches occupied in European and source population ranges revealed more than 96% overlap between invasive and source niches, supporting niche conservatism. However, we found evidence for postintroduction genetic evolution by reanalyzing a published ddRADseq genomic dataset from 90 European invasive populations using genotype–environment association (GEA) methods and generalized dissimilarity modeling (GDM). Three loci, among which a putative heat‐shock protein, exhibited significant allelic turnover along the gradient of winter precipitation that could be associated with ongoing range expansion. Wing morphometric traits weakly correlated with environmental gradients within Europe, but wing size differed between invasive and source populations located in different climatic areas. Niche similarities between source and invasive ranges might have facilitated the establishment of populations. Nonetheless, we found evidence for environmental‐induced adaptive changes after introduction. The ability to rapidly evolve observed in invasive populations (genetic shift) together with a large proportion of unfilled potential suitable areas (80%) pave the way to further spread of Ae. albopictus in Europe.  相似文献   

9.
10.
The distribution of the nine banded armadillo (Dasypus novemcinctus), the only species in the family Dasypodidae found in the USA, has expanded greatly since the species was first recorded in southern Texas in 1849. Currently, the range of D. novemcinctus includes 15 states in the USA. Previous studies on the geographical expansion of this species, based on physiological experiments and distribution surveys, revealed a possible western moisture limit, a northern temperature limit, and potential north‐eastward range expansion in the USA. We applied an ecological niche modelling approach and produced a potential distribution map of D. novemcinctus with comparable western (102 °W) and northern (40 °N) limits, and confirmed the possibility of further north‐east range expansion to climatically suitable areas in the USA.  相似文献   

11.
Until recently, most phylogeographic approaches have been unable to distinguish between demographic and range expansion processes, making it difficult to test for the possibility of range expansion without population growth and vice versa. In this study, we applied a Bayesian phylogeographic approach to reconstruct both demographic and range expansion in the lizard Liolaemus darwinii of the Monte Desert in Central Argentina, during the Late Quaternary. Based on analysis of 14 anonymous nuclear loci and the cytochrome b mitochondrial DNA gene, we detected signals of demographic expansion starting at ~55 ka based on Bayesian Skyline and Skyride Plots. In contrast, Bayesian relaxed models of spatial diffusion suggested that range expansion occurred only between ~95 and 55 ka, and more recently, diffusion rates were very low during demographic expansion. The possibility of population growth without substantial range expansion could account for the shared patterns of demographic expansion during the Last Glacial Maxima (OIS 2 and 4) in fish, small mammals and other lizards of the Monte Desert. We found substantial variation in diffusion rates over time, and very high rates during the range expansion phase, consistent with a rapidly advancing expansion front towards the southeast shown by palaeo‐distribution models. Furthermore, the estimated diffusion rates are congruent with observed dispersal rates of lizards in field conditions and therefore provide additional confidence to the temporal scale of inferred phylogeographic patterns. Our study highlights how the integration of phylogeography with palaeo‐distribution models can shed light on both demographic and range expansion processes and their potential causes.  相似文献   

12.
Changes in the world's oceans have altered nutrient flow, and affected the viability of predator populations when prey species become unavailable. These changes are integrated into the tissues of apex predators over space and time and can be quantified using stable isotopes in the inert feathers of historical and contemporary avian specimens. We measured δ13C and δ15N values in Flesh‐footed Shearwaters (Puffinus carneipes) from Western and South Australia from 1936–2011. The Flesh‐footed Shearwaters more than doubled their trophic niche (from 3.91 ± 1.37 ‰2 to 10.00 ± 1.79 ‰2), and dropped an entire trophic level in 75 years (predicted δ15N decreased from +16.9 ‰ to + 13.5 ‰, and δ13C from ?16.9 ‰ to ?17.9 ‰) – the largest change in δ15N yet reported in any marine bird, suggesting a relatively rapid shift in the composition of the Indian Ocean food web, or changes in baseline δ13C and δ15N values. A stronger El Niño‐Southern Oscillation results in a weaker Leeuwin Current in Western Australia, and decreased Flesh‐footed Shearwater δ13C and δ15N. Current climate forecasts predict this trend to continue, leading to increased oceanic ‘tropicalization' and potentially competition between Flesh‐footed Shearwaters and more tropical sympatric species with expanding ranges. Flesh‐footed Shearwater populations are declining, and current conservation measures aimed primarily at bycatch mitigation are not restoring populations. Widespread shifts in foraging, as shown here, may explain some of the reported decline. An improved understanding and ability to mitigate the impacts of global climactic changes is therefore critical to the long‐term sustainability of this declining species.  相似文献   

13.
1. The niche variation hypothesis predicts that among‐individual variation in niche use will increase in the presence of intraspecific competition and decrease in the presence of interspecific competition. We sought to determine whether the local isotopic niche breadth of fish inhabiting a wetland was best explained by competition for resources and the niche variation hypothesis, by dispersal of individuals from locations with different prey resources or by a combination of the two. We analysed stable isotopes of carbon and nitrogen as indices of feeding niche and compared metrics of within‐site spread to characterise site‐level isotopic niche breadth. We then evaluated the explanatory power of competing models of the direct and indirect effects of several environmental variables spanning gradients of disturbance, competition strength and food availability on among‐individual variation of the eastern mosquitofish (Gambusia holbrooki). 2. The Dispersal model posits that only the direct effect of disturbance (i.e. changes in water level known to induce fish movement) influences among‐individual variation in isotopic niche. The Partitioning model allows for only direct effects of local food availability on among‐individual variation. The Combined model allows for both hypotheses by including the direct effects of disturbance and food availability. 3. A linear regression of the Combined model described more variance than models limited to the variables of either the Dispersal or Partitioning models. Of the independent variables considered, the food availability variable (per cent edible periphyton) explained the most variation in isotopic niche breadth, followed closely by the disturbance variable (days since last drying event). 4. Structural equation modelling provided further evidence that the Combined model was best supported by the data, with the Partitioning and the Dispersal models only modestly less informative. Again, the per cent edible periphyton was the variable with the largest direct effect on niche variability, with other food availability variables and the disturbance variable only slightly less important. Indirect effects of heterospecific and conspecific competitor densities were also important, through their effects on prey density. 5. Our results support the Combined hypotheses, although partitioning mechanisms appear to explain the most diet variation among individuals in the eastern mosquitofish. The results also support some predictions of the niche variation hypothesis, although both conspecific and interspecific competition appeared to increase isotopic niche breadth in contrast to predictions that interspecific competition would decrease it. We think this resulted from high diet overlap of co‐occurring species, most of which consume similar macroinvertebrates.  相似文献   

14.
Age‐related changes in diet have implications for competitive interactions and for predator–prey dynamics, affecting individuals and groups at different life stages. To quantify patterns of variation and ontogenetic change in the diets of Tasmanian devils Sarcophilus harrisii, a threatened marsupial carnivore, we analyzed variation in the stable isotope composition of whisker tissue samples taken from 91 individual devils from Wilmot, Tasmania from December 2014 to February 2017. Both δ13C and δ15N decreased with increasing age in weaned Tasmanian devils, indicating that as they age devils rely less on small mammals and birds, and more on large herbivores. Devils <12 months old had broader group isotopic niches, as estimated by Bayesian standard ellipses (SEAB mode = 1.042) than devils from 12 to 23 months old (mode = 0.541) and devils ≥24 months old (mode = 0.532). Devils <24 months old had broader individual isotopic niches (SEAB mode range 0.492–1.083) than devils ≥24 months old (mode range 0.092–0.240). A decrease in δ15N from the older whisker sections to the more recently grown sections in devils <24 months old likely reflects the period of weaning in this species, as this pattern was not observed in devils ≥24 months old. Our data reveal changes in the isotopic composition of devil whiskers with increasing age, accompanied by a reduction in isotopic variation both among population age classes and within individuals, reflecting the effect of weaning in early life, and a likely shift from an initially diverse diet of small mammals, birds, and invertebrates towards increasing consumption of larger herbivores in adulthood.  相似文献   

15.
In the current context of ongoing global change, the understanding of how the niches of invasive species may change between different geographical areas or time periods is extremely important for the early detection and control of future invasions. We evaluated the effect of climate and non‐climate variables and the sensitivity to various spatial resolutions (i.e. 1 and 20 km) on niche changes during the invasion of Taraxacum officinale and Ulex europaeus in South America. We estimated niche changes using a combination of principal components analyses (PCA) and reciprocal Ecological Niche Modelling (rENM). We further investigated future invasion dynamics under a severe warming scenario for 2050 to unravel the role of niche shifts in the future potential distribution of the species. We observed a clear niche expansion for both species in South America towards higher temperature, precipitation and radiation relative to their native ranges. In contrast, the set of environmental conditions only occupied in the native ranges (i.e. niche unfilling) were less relevant. The magnitude of the niche shifts did not depend on the resolution of the variables. Models calibrated with occurrences from native range predicted large suitable areas in South America (outside of the Andes range) where T. officinale and U. europaeus are currently absent. Additionally, both species could increase their potential distributions by 2050, mostly in the southern part of the continent. In addition, the niche unfilling suggests high potential to invade additional regions in the future, which is extremely relevant considering the current impact of these species in the Southern Hemisphere. These findings confirm that invasive species can occupy new niches that are not predictable from knowledge based only on climate variables or information from the native range.  相似文献   

16.
Canada Warblers (Cardellina canadensis) are long‐distance Neotropical migrants, but little is known about their migratory behavior and ecology. We examined the fall migration of Canada Warblers at two sites, Darién and the Sierra Nevada de Santa Marta, in northern Colombia from 2011 to 2015 using constant‐effort mist‐netting. Our objectives were to determine: 1) breeding origins and connectivity patterns, 2) migratory pathways, 3) the phenology of migration, 4) possible differences in movements between ages and sexes, 5) their body condition when arriving in Colombia, and 6) evidence of stopover and refueling. Stable hydrogen isotopes (δ2Hf) in flight feathers were analyzed to estimate breeding origins of captured Canada Warblers in North America. The δ2Hf values revealed that most Canada Warblers captured in the Darién likely originated from the central and northeastern regions of their breeding range. The capture of all but one of 162 Canada Warblers in the Darién also indicates a migration route through Central American rather than across the Caribbean Sea. Most captured birds were hatch‐year birds (91% vs. 9% after hatch‐year birds), and we captured more females (67%) than males (33%). Canada Warblers migrated through the Darién from 20 September to early November, with most arriving in mid‐October. Most (89%) individuals arrived with low fuel reserves. These results combined with estimated flight ranges revealed that 46% of the individuals captured in the Darién likely needed to refuel to continue migrating, whereas 31% could continue 50 to 200 km beyond our capture site. However, no individuals were recaptured so stopover duration could not be determined. Canada Warblers may adopt a strategy of 1‐d stopovers and short flights or, alternatively, the Darién may represent low‐quality habitat and birds quickly left our study site in search of suitable habitat. Further study is needed to determine the possible importance of other (montane) habitats for Canada Warblers in the Darién region to prioritize conservation actions.  相似文献   

17.
A complementary approach of stomach content and stable isotope analyses was used to characterize the foraging ecology and evaluate niche overlap between pygmy (Kogia breviceps) and dwarf (K. sima) sperm whales stranded on the U.S. mid‐Atlantic coast between 1998 and 2011. Food habits analysis demonstrated both species were primarily teuthophagous, with 35 species of cephalopods, and 2 species of mesopelagic fishes represented in their overall diets. Pianka's Index of niche overlap suggested high overlap between whale diets (On = 0.92), with squids from the families Histioteuthidae, Cranchidae, and Ommastrephidae serving as primary prey. Pygmy sperm whales consumed slightly larger prey sizes (mean mantle length [ML] = 10.8 cm) than dwarf sperm whales (mean ML = 7.8 cm). Mean prey sizes consumed by pygmy sperm whales increased with growth, but showed no trend in dwarf sperm whales. Significant differences were not detected in δ15N and δ13C values of muscle tissues from pygmy (10.8‰ ± 0.5‰, ?17.1‰ ± 0.6‰), and dwarf sperm whales (10.7‰ ± 0.5‰, ?17.0‰ ± 0.4‰), respectively. Isotopic niche widths also did not differ significantly and dietary overlap was high between the two species. Results suggest the feeding ecologies of the pygmy and dwarf sperm whales are similar and both species occupy equivalent trophic niches in the region.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号