共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The French and Japanese Developmental Biology Societies, teaming up with Human Frontier Science Program, were eager to meet back in person in November 2022 in the lovely city of Strasbourg. Top scientists in the developmental biology field from France and Japan, but also from United States, United Kingdom, Switzerland or Germany shared their exciting science during the 4 days of this meeting. Core fields of developmental biology such as morphogenesis, patterning, cell identity, and cell state transition, notably at the single cell level, were well represented, and a diversity of experimental models, including plants, animals, and other exotic organisms, as well as some in vitro cellular models, were covered. This event also extended the scope of classic scientific gatherings for two reasons. First the involvement of artists during the preparation of the event and on site. Second, part of the meeting was open for the general public through a series of outreach events, including a music and video presentation through projection mapping at Rohan palace, as well as public lectures. 相似文献
3.
《Genesis (New York, N.Y. : 2000)》2017,55(6)
The lens originates from a simple cuboidal epithelium, which, on its basal side, contacts the optic vesicle, whilst facing the extraembryonic environment on its apical side. As this epithelium changes into the pseudostratified lens placode, its cells elongate and become narrower at their apical ends. This is due to the formation of an apical actin network, whose appearance is restricted to cells of the placodal region, as a result of region‐specific signaling mechanisms that remain largely unknown. Here, we investigated the role of the polarity protein PAR3 and the phosphorylation state of its Threonine 833 (T833) aPKC‐binding site in the recruitment of aPKC and in the establishment of actin network in the chick lens placode. Overexpression of wild type PAR3 recruited aPKC and punctate actin clusters to the basolateral membranes of the placodal cells. Recruitment of aPKC depended on the charge of the residue that replaced the T833 residue. In contrast, induction of the ectopic actin spots was independent on the charge of this residue. 相似文献
4.
The developing limb is a useful model for studying organogenesis and developmental processes. Although Cre alleles exist for conditional loss‐ or gain‐of‐function in limbs, Cre alleles targeting specific limb subdomains are desirable. Here we report on the generation of the Hoxa13:Cre line, in which the Cre gene is inserted in the endogenous Hoxa13 gene. We provide evidence that the Cre is active in embryonic tissues/regions where the endogenous Hoxa13 gene is expressed. Our results show that cells expressing Hoxa13 in developing limb buds contribute to the entire autopod (hand/feet) skeleton and validate Hoxa13 as a distal limb marker as far as the skeleton is concerned. In contrast, in the limb musculature, Cre‐based fate mapping shows that almost all muscle masses of the zeugopod (forearm) and part of the triceps contain Hoxa13‐expressing cells and/or their descendants. Besides the limb, the activity of the Cre is detectable in the urogenital system and the hindgut, primarily in the epithelium and smooth muscles. Together our data show that the Hoxa13:Cre allele is a useful tool for conditional gene manipulation in the urogenital system, posterior digestive tract, autopod and part of the limb musculature. genesis 53:366–376, 2015. © 2015 Wiley Periodicals, Inc. 相似文献
5.
Camille E. Tessier;Aurore M. M. Dupuy;Thomas Pelé;Philippe P. Juin;Jacqueline A. Lees;Vincent J. Guen; 《Genesis (New York, N.Y. : 2000)》2024,62(1):e23568
Epithelial-mesenchymal transition (EMT) and primary ciliogenesis are two cell-biological programs that are essential for development of multicellular organisms and whose abnormal regulation results in many diseases (i.e., developmental anomalies and cancers). Emerging studies suggest an intricate interplay between these two processes. Here, we discuss physiological and pathological contexts in which their interconnections promote normal development or disease progression. We describe underlying molecular mechanisms of the interplay and EMT/ciliary signaling axes that influence EMT-related processes (i.e., stemness, motility and invasion). Understanding the molecular and cellular mechanisms of the relationship between EMT and primary ciliogenesis may provide new insights in the etiology of diseases related to EMT and cilia dysfunction. 相似文献
6.
《Genesis (New York, N.Y. : 2000)》2017,55(6)
Our increasing comprehension of neural crest cell development has reciprocally advanced our understanding of cadherin expression, regulation, and function. As a transient population of multipotent stem cells that significantly contribute to the vertebrate body plan, neural crest cells undergo a variety of transformative processes and exhibit many cellular behaviors, including epithelial‐to‐mesenchymal transition (EMT), motility, collective cell migration, and differentiation. Multiple studies have elucidated regulatory and mechanistic details of specific cadherins during neural crest cell development in a highly contextual manner. Collectively, these results reveal that gradual changes within neural crest cells are accompanied by often times subtle, yet important, alterations in cadherin expression and function. The primary focus of this review is to coalesce recent data on cadherins in neural crest cells, from their specification to their emergence as motile cells soon after EMT, and to highlight the complexities of cadherin expression beyond our current perceptions, including the hypothesis that the neural crest EMT is a transition involving a predominantly singular cadherin switch. Further advancements in genetic approaches and molecular techniques will provide greater opportunities to integrate data from various model systems in order to distinguish unique or overlapping functions of cadherins expressed at any point throughout the ontogeny of the neural crest. 相似文献
7.
Nodal functions in axis and tissue specification during embryogenesis. In sea urchin embryos, Nodal is crucial for specification of oral ectoderm and is thought to pattern neurogenesis in the animal plate. To determine if Nodal functions directly in suppressing neuron differentiation we have prepared mutant forms of Sp-Smad2/3. Expressing an activated form produces embryos similar to embryos overexpressing Nodal, but with fewer neurons. In chimeras in which Nodal is suppressed, cells expressing activated Sp-Smad2/3 form oral ectoderm, but not neurons. In embryos with vegetal signaling blocked, neurons do not form if activated Smad2/3 is co-expressed. Expression of dominant negative mutants produces embryos identical to those resulting from blocking Nodal expression. In chimeras overexpressing Nodal, cells expressing dominant negative Sp-Smad2/3 form aboral ectoderm and give rise to neurons. In permanent blastula chimeras dominant negative Sp-Smad2/3 is able to suppress the effects of Nodal permitting neuron differentiation. In these chimeras Nodal expression in one half suppresses neural differentiation across the interface. Anti-phospho-Smad3 reveals that the cells adjacent to cells expressing Nodal have nuclear immunoreactivity. We conclude Sp-Smad2/3 is a component of the Nodal signaling pathway in sea urchins and that Nodal diffuses short distances to suppress neural differentiation. 相似文献
8.
9.
10.
Melanie Seyfang Viktoria Knotz Dietmar Gradl Doris Wedlich 《Genesis (New York, N.Y. : 2000)》2015,53(10):627-639
11.
Tian Hong;Jianhua Xing; 《Genesis (New York, N.Y. : 2000)》2024,62(2):e23591
Reversible transitions between epithelial and mesenchymal cell states are a crucial form of epithelial plasticity for development and disease progression. Recent experimental data and mechanistic models showed multiple intermediate epithelial–mesenchymal transition (EMT) states as well as trajectories of EMT underpinned by complex gene regulatory networks. In this review, we summarize recent progress in quantifying EMT and characterizing EMT paths with computational methods and quantitative experiments including omics-level measurements. We provide perspectives on how these studies can help relating fundamental cell biology to physiological and pathological outcomes of EMT. 相似文献
12.
Guillaume Burnet Chun-Wei Allen Feng Ka Man Fiona Cheung Josephine Bowles Cassy M. Spiller 《Genesis (New York, N.Y. : 2000)》2023,61(1-2):e23511
Germline-specific Cre lines are useful for analyses of primordial germ cell, spermatogonial and oogonial development, but also for whole-body deletions when transmitted through subsequent generations. Several germ cell specific Cre mouse strains exist, with various degrees of specificity, efficiency, and temporal activation. Here, we describe the CRISPR/Cas9 targeted insertion of an improved Cre (iCre) sequence in-frame at the 3′ end of the Ddx4 locus to generate the Ddx4-P2A-iCre allele. Our functional assessment of this new allele, designated Ddx4iCreJoBo, reveals that Cre activity begins in PGCs from at least E10.5, and that it achieves higher efficiency for early gonadal (E10.5–12.5) germline deletion when compared to the inducible Oct4CreERT2 line. We found the Ddx4iCreJoBo allele to be hypomorphic for Ddx4 expression and homozygous males, but not females, were infertile. Using two reporter lines (R26RLacZ and R26RtdTomato) and a floxed gene of interest (Criptoflox) we found ectopic activity in multiple organs; global recombination (a common feature of germline Cre alleles) varies from 10 to 100%, depending on the particular floxed allele. There is a strong maternal effect, and therefore it is preferable for Ddx4iCreJoBo to be inherited from the male parent if ubiquitous deletion is not desired. With these limitations considered, we describe the Ddx4iCreJoBo line as useful for germline studies in which early gonadal deletion is required. 相似文献
13.
Intermediate mesoderm (IM) is the strip of tissue lying between the paraxial mesoderm (PAM) and the lateral plate mesoderm that gives rise to the kidneys and gonads. Chick fate mapping studies suggest that IM is specified shortly after cells leave the primitive streak and that these cells do not require external signals to express IM‐specific genes. Surgical manipulations of the chick embryo, however, revealed that PAM‐specific signals are required for IM differentiation into pronephros—the first kidney. Here, we use a genetic approach in mice to examine the dependency of IM on proper PAM formation. In Tbx6 null mutant embryos, which form 7–9 improperly patterned anterior somites, IM formation is severely compromised, while in Tbx6 hypomorphic embryos, where somites form but are improperly patterned along the axis, the impact to IM formation is lessened. These results suggest that IM and its derivatives, the kidneys and the gonads, are directly or indirectly dependent on proper PAM formation. This has implications for humans harboring Tbx6 mutations which are known to have somite‐derived defects including congenital scoliosis. 相似文献
14.
Fen Wang Yasmin H. Ali Kelvin L. Chan Fei Zou Stefan Offermanns Zhisheng Jiang Zhihua Jiang 《Genesis (New York, N.Y. : 2000)》2017,55(9)
The Myh11‐CreERT2 mouse line (Cre+) has gained increasing application because of its high lineage specificity relative to other Cre drivers targeting smooth muscle cells (SMCs). This Cre allele, however, was initially inserted into the Y chromosome (X/YCre+), which excluded its application in female mice. Our group established a Cre+ colony from male ancestors. Surprisingly, genotype screening identified female carriers that stably transmitted the Cre allele to the following generations. Crossbreeding experiments revealed a pattern of X‐linked inheritance for the transgene (k > 1000), indicating that these female carries acquired the Cre allele through a mechanism of Y to X chromosome translocation. Further characterization demonstrated that in hemizygous X/XCre+ mice Cre activity was restricted to a subset arterial SMCs, with Cre expression in arteries decreased by 50% compared to X/YCre+ mice. This mosaicism, however, diminished in homozygous XCre+/XCre+ mice. In a model of aortic aneurysm induced by a SMC‐specific Tgfbr1 deletion, the homozygous XCre+/XCre+ Cre driver unmasked the aortic phenotype that is otherwise subclinical when driven by the hemizygous X/XCre+ Cre line. In conclusion, the Cre allele carried by this female mouse line is located on the X chromosome and subjected to X‐inactivation. The homozygous XCre+/XCre+ mice produce uniform Cre activity in arterial SMCs. 相似文献
15.
Andrea Rocha;Quynh Anh Thi Nguyen;Sachiko Haga-Yamanaka; 《Genesis (New York, N.Y. : 2000)》2024,62(2):e23597
Sensory signals detected by olfactory sensory organs are critical regulators of animal behavior. An accessory olfactory organ, the vomeronasal organ, detects cues from other animals and plays a pivotal role in intra- and inter-species interactions in mice. However, how ethologically relevant cues control mouse behavior through approximately 350 vomeronasal sensory receptor proteins largely remains elusive. The type 2 vomeronasal receptor-A4 (V2R-A4) subfamily members have been repeatedly detected from vomeronasal sensory neurons responsive to predator cues, suggesting a potential role of this receptor subfamily as a sensor for predators. This review focuses on this intriguing subfamily, delving into its receptor functions and genetic characteristics. 相似文献
16.
Iryna Kozmikova Simona Candiani Peter Fabian Daniela Gurska Zbynek Kozmik 《Developmental biology》2013
In chordates, early separation of cell fate domains occurs prior to the final specification of ectoderm to neural and non-neural as well as mesoderm to dorsal and ventral during development. Maintaining such division with the establishment of an exact border between the domains is required for the formation of highly differentiated structures such as neural tube and notochord. We hypothesized that the key condition for efficient cell fate separation in a chordate embryo is the presence of a positive feedback loop for Bmp signaling within the gene regulatory network (GRN), underlying early axial patterning. Here, we therefore investigated the role of Bmp signaling in axial cell fate determination in amphioxus, the basal chordate possessing a centralized nervous system. Pharmacological inhibition of Bmp signaling induces dorsalization of amphioxus embryos and expansion of neural plate markers, which is consistent with an ancestral role of Bmp signaling in chordate axial patterning and neural plate formation. Furthermore, we provided evidence for the presence of the positive feedback loop within the Bmp signaling network of amphioxus. Using mRNA microinjections we found that, in contrast to vertebrate Vent genes, which promote the expression of Bmp4, amphioxus Vent1 is likely not responsible for activation of cephalochordate ortholog Bmp2/4. Cis-regulatory analysis of amphioxus Bmp2/4, Admp and Chordin promoters in medaka embryos revealed remarkable conservation of the gene regulatory information between vertebrates and basal chordates. Our data suggest that emergence of a positive feedback loop within the Bmp signaling network may represent a key molecular event in the evolutionary history of the chordate cell fate determination. 相似文献
17.
A-L Hillje M A S Pavlou E Beckmann M M A Worlitzer L Bahnassawy L Lewejohann T Palm J C Schwamborn 《Cell death & disease》2013,4(12):e976
In the adult mammalian brain, neural stem cells in the subventricular zone continuously generate new neurons for the olfactory bulb. Cell fate commitment in these adult neural stem cells is regulated by cell fate-determining proteins. Here, we show that the cell fate-determinant TRIM32 is upregulated during differentiation of adult neural stem cells into olfactory bulb neurons. We further demonstrate that TRIM32 is necessary for the correct induction of neuronal differentiation in these cells. In the absence of TRIM32, neuroblasts differentiate slower and show gene expression profiles that are characteristic of immature cells. Interestingly, TRIM32 deficiency induces more neural progenitor cell proliferation and less cell death. Both effects accumulate in an overproduction of adult-generated olfactory bulb neurons of TRIM32 knockout mice. These results highlight the function of the cell fate-determinant TRIM32 for a balanced activity of the adult neurogenesis process. 相似文献
18.
E‐Pien Tan Yilong Li Martin Del Castillo Velasco‐Herrera Kosuke Yusa Allan Bradley 《Genesis (New York, N.Y. : 2000)》2015,53(2):225-236
The CRISPR‐Cas9 system consists of a site‐specific, targetable DNA nuclease that holds great potential in gene editing and genome‐wide screening applications. To apply the CRISPR‐Cas9 system to these assays successfully, the rate at which Cas9 induces DNA breaks at undesired loci must be understood. We characterized the rate of Cas9 off‐target activity in typical Cas9 experiments in two human and one mouse cell lines. We analyzed the Cas9 cutting activity of 12 gRNAs in both their targeted sites and ~90 predicted off‐target sites per gRNA. In a Cas9‐based knockout experiment, gRNAs induced detectable Cas9 cutting activity in all on‐target sites and in only a few off‐target sites genome‐wide in human 293FT, human‐induced pluripotent stem (hiPS) cells, and mouse embryonic stem (ES) cells. Both the cutting rates and DNA repair patterns were highly correlated between the two human cell lines in both on‐target and off‐target sites. In clonal Cas9 cutting analysis in mouse ES cells, biallelic Cas9 cutting was observed with low off‐target activity. Our results show that off‐target activity of Cas9 is low and predictable by the degree of sequence identity between the gRNA and a potential off‐target site. Off‐target Cas9 activity can be minimized by selecting gRNAs with few off‐target sites of near complementarity. genesis 53:225–236, 2015. © 2014 The Authors. Genesis Published by Wiley Periodicals, Inc. 相似文献
19.
Ryan P. Liegel Erin Finnerty Lauren Blizzard Andrew DiStasio Robert B. Hufnagel Howard M. Saal Kristen L. Sund Cynthia A. Prows Rolf W. Stottmann 《Genesis (New York, N.Y. : 2000)》2019,57(1)
A recent convergence of technological innovations has re‐energized the ability to apply genetics to research in human craniofacial development. Next‐generation exome and whole genome sequencing have significantly dropped in price, making it relatively trivial to sequence and analyze patients and families with congenital craniofacial anomalies. A concurrent revolution in genome editing with the use of the CRISPR‐Cas9 system enables the rapid generation of animal models, including mouse, which can precisely recapitulate human variants. Here, we summarize the choices currently available to the research community. We illustrate this approach with the study of a family with a novel craniofacial syndrome with dominant inheritance pattern. The genomic analysis suggested a causal variant in AMOTL1 which we modeled in mice. We also made a novel deletion allele of Amotl1. Our results indicate that Amotl1 is not required in the mouse for survival to weaning. Mice carrying the variant identified in the human sequencing studies, however, do not survive to weaning in normal ratios. The cause of death is not understood for these mice complicating our conclusions about the pathogenicity in the index patient. Thus, we highlight some of the powerful opportunities and confounding factors confronting current craniofacial genetic research. 相似文献
20.
Silke Rinkwitz Fan‐Suo Geng Elizabeth Manning Maximiliano Suster Koichi Kawakami Thomas S. Becker 《Genesis (New York, N.Y. : 2000)》2015,53(10):640-651
Single Nucleotide Polymorphisms in FTO intron 1 have been associated with obesity risk, leading to the hypothesis that FTO is the obesity‐related gene. However, other studies have shown that the FTO gene is part of the regulatory domain of the neighboring IRX3 gene and that enhancers in FTO intron 1 regulate IRX3. While Irx3 activity was shown to be necessary in the hypothalamus for the metabolic function of Irx3 in mouse, no enhancers with hypothalamic activity have been demonstrated in the risk‐associated region within FTO. In order to identify potential enhancers at the human FTO locus in vivo, we tested regulatory activity in FTO intron 1 using BAC transgenesis in zebrafish. A minimal gata2 promoter‐GFP cassette was inserted 1.3 kb upstream of the obesity associated SNP rs9939609 in a human FTO BAC plasmid. In addition to the previously identified expression domains in notochord and kidney, human FTO BAC:GFP transgenic zebrafish larvae expressed GFP in the ventral posterior tuberculum, the posterior hypothalamus and the anterior brainstem, which are also expression domains of zebrafish irx3a. In contrast, an in‐frame insertion of a GFP cassette at the FTO start codon resulted in weak ubiquitous GFP expression indicating that the promoter of FTO does likely not react to enhancers located in the obesity risk‐associated region. genesis 53:640–651, 2015. © 2015 The Authors. genesis Published by Wiley Periodicals, Inc. 相似文献