首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Long‐distance migration is a common phenomenon across the animal kingdom but the scale of annual migratory movements has made it difficult for researchers to estimate survival rates during these periods of the annual cycle. Estimating migration survival is particularly challenging for small‐bodied species that cannot carry satellite tags, a group that includes the vast majority of migratory species. When capture–recapture data are available for linked breeding and non‐breeding populations, estimation of overall migration survival is possible but current methods do not allow separate estimation of spring and autumn survival rates. Recent development of a Bayesian integrated survival model has provided a method to separately estimate the latent spring and autumn survival rates using capture–recapture data, though the accuracy and precision of these estimates has not been formally tested. Here, I used simulated data to explore the estimability of migration survival rates using this model. Under a variety of biologically realistic scenarios, I demonstrate that spring and autumn migration survival can be estimated from the integrated survival model, though estimates are biased toward the overall migration survival probability. The direction and magnitude of this bias are influenced by the relative difference in spring and autumn survival rates as well as the degree of annual variation in these rates. The inclusion of covariates can improve the model's performance, especially when annual variation in migration survival rates is low. Migration survival rates can be estimated from relatively short time series (4–5 years), but bias and precision of estimates are improved when longer time series (10–12 years) are available. The ability to estimate seasonal survival rates of small, migratory organisms opens the door to advancing our understanding of the ecology and conservation of these species. Application of this method will enable researchers to better understand when mortality occurs across the annual cycle and how the migratory periods contribute to population dynamics. Integrating summer and winter capture data requires knowledge of the migratory connectivity of sampled populations and therefore efforts to simultaneously collect both survival and tracking data should be a high priority, especially for species of conservation concern.  相似文献   

2.
Capture–mark–recapture (CMR) studies have been used extensively in ecology and evolution. While it is feasible to apply CMR in some animals, it is considerably more challenging in small fast‐moving species such as insects. In these groups, low recapture rates can bias estimates of demographic parameters, thereby handicapping effective analysis and management of wild populations. Here, we use high‐speed videos (HSV) to capture two large dragonfly species, Anax junius and Rhionaeschna multicolor, that rarely land and, thus, are particularly challenging for CMR studies. We test whether HSV, compared to conventional “eye” observations, increases the “resighting” rates and, consequently, improves estimates of both survival rates and the effects of demographic covariates on survival. We show that the use of HSV increases the number of resights by 64% in A. junius and 48% in R. multicolor. HSV improved our estimates of resighting and survival probability which were either under‐ or overestimated with the conventional observations. Including HSV improved credible intervals for resighting rate and survival probability by 190% and 130% in A. junius and R. multicolor, respectively. Hence, it has the potential to open the door to a wide range of research possibilities on species that are traditionally difficult to monitor with distance sampling, including within insects and birds.  相似文献   

3.
In this study, the spot pattern in Hippocampus guttulatus was analysed using a computer programme algorithm that allowed individual comparison. This methodology was first tested in a controlled environment using 51 adult and 55 juvenile H. guttulatus. Positive matches were obtained in 86·3 and 83·6% of the adults and juveniles, respectively. In a second experiment, monthly surveys were carried out in five selected locations in the Ria Formosa Lagoon, south Portugal, over the course of a year and a total of 980 photographs were analysed. Photographed H. guttulatus were re‐sighted one to nine times during the course of the survey period with an overall re‐sight record of over 30%. Photo‐identification was therefore shown to be a useful tool for non‐invasive mark–recapture studies that can be successfully used to survey the population abundance of H. guttulatus aged 6 months or older in consecutive years. This could be of great value when considering the assessment of H. guttulatus populations and understanding changes over time.  相似文献   

4.
I describe an open‐source R package, multimark , for estimation of survival and abundance from capture–mark–recapture data consisting of multiple “noninvasive” marks. Noninvasive marks include natural pelt or skin patterns, scars, and genetic markers that enable individual identification in lieu of physical capture. multimark provides a means for combining and jointly analyzing encounter histories from multiple noninvasive sources that otherwise cannot be reliably matched (e.g., left‐ and right‐sided photographs of bilaterally asymmetrical individuals). The package is currently capable of fitting open population Cormack–Jolly–Seber (CJS) and closed population abundance models with up to two mark types using Bayesian Markov chain Monte Carlo (MCMC) methods. multimark can also be used for Bayesian analyses of conventional capture–recapture data consisting of a single‐mark type. Some package features include (1) general model specification using formulas already familiar to most R users, (2) ability to include temporal, behavioral, age, cohort, and individual heterogeneity effects in detection and survival probabilities, (3) improved MCMC algorithm that is computationally faster and more efficient than previously proposed methods, (4) Bayesian multimodel inference using reversible jump MCMC, and (5) data simulation capabilities for power analyses and assessing model performance. I demonstrate use of multimark using left‐ and right‐sided encounter histories for bobcats (Lynx rufus) collected from remote single‐camera stations in southern California. In this example, there is evidence of a behavioral effect (i.e., trap “happy” response) that is otherwise indiscernible using conventional single‐sided analyses. The package will be most useful to ecologists seeking stronger inferences by combining different sources of mark–recapture data that are difficult (or impossible) to reliably reconcile, particularly with the sparse datasets typical of rare or elusive species for which noninvasive sampling techniques are most commonly employed. Addressing deficiencies in currently available software, multimark also provides a user‐friendly interface for performing Bayesian multimodel inference using capture–recapture data consisting of a single conventional mark or multiple noninvasive marks.  相似文献   

5.
Studying the demography of wild animals remains challenging as several of the critical parts of their life history may be difficult to observe in the field. In particular, determining with certainty when an individual breeds for the first time is not always obvious. This can be problematic because uncertainty about the transition from a prebreeder to a breeder state – recruitment – leads to uncertainty in vital rate estimates and in turn in population projection models. To avoid this issue, the common practice is to discard imperfect data from the analyses. However, this practice can generate a bias in vital rate estimates if uncertainty is related to a specific component of the population and reduces the sample size of the dataset and consequently the statistical power to detect effects of biological interest. Here, we compared the demographic parameters assessed from a standard multistate capture–recapture approach to the estimates obtained from the newly developed multi‐event framework that specifically accounts for uncertainty in state assessment. Using a comprehensive longitudinal dataset on southern elephant seals, we demonstrated that the multi‐event model enabled us to use all the data collected (6639 capture–recapture histories vs. 4179 with the multistate model) by accounting for uncertainty in breeding states, thereby increasing the precision and accuracy of the demographic parameter estimates. The multi‐event model allowed us to incorporate imperfect data into demographic analyses. The gain in precision obtained has important implications in the conservation and management of species because limiting uncertainty around vital rates will permit predicting population viability with greater accuracy.  相似文献   

6.
Photographic capture–recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and cost‐effectiveness. Recently, several computer‐aided photo‐matching algorithms have been developed to more efficiently match images of unique individuals in databases with thousands of images. However, the identification accuracy of these algorithms can severely bias estimates of vital rates and population size. Therefore, it is important to understand the performance and limitations of state‐of‐the‐art photo‐matching algorithms prior to implementation in capture–recapture studies involving possibly thousands of images. Here, we compared the performance of four photo‐matching algorithms; Wild‐ID, I3S Pattern+, APHIS, and AmphIdent using multiple amphibian databases of varying image quality. We measured the performance of each algorithm and evaluated the performance in relation to database size and the number of matching images in the database. We found that algorithm performance differed greatly by algorithm and image database, with recognition rates ranging from 100% to 22.6% when limiting the review to the 10 highest ranking images. We found that recognition rate degraded marginally with increased database size and could be improved considerably with a higher number of matching images in the database. In our study, the pixel‐based algorithm of AmphIdent exhibited superior recognition rates compared to the other approaches. We recommend carefully evaluating algorithm performance prior to using it to match a complete database. By choosing a suitable matching algorithm, databases of sizes that are unfeasible to match “by eye” can be easily translated to accurate individual capture histories necessary for robust demographic estimates.  相似文献   

7.
North Atlantic right whales (Eubalaena glacialis Müller 1776) present an interesting problem for abundance and trend estimation in marine wildlife conservation. They are long lived, individually identifiable, highly mobile, and one of the rarest of cetaceans. Individuals are annually resighted at different rates, primarily due to varying stay durations among several principal habitats within a large geographic range. To date, characterizations of abundance have been produced that use simple accounting procedures with differing assumptions about mortality. To better characterize changing abundance of North Atlantic right whales between 1990 and 2015, we adapted a state–space formulation with Jolly‐Seber assumptions about population entry (birth and immigration) to individual resighting histories and fit it using empirical Bayes methodology. This hierarchical model included accommodation for the effect of the substantial individual capture heterogeneity. Estimates from this approach were only slightly higher than published accounting procedures, except for the most recent years (when recapture rates had declined substantially). North Atlantic right whales' abundance increased at about 2.8% per annum from median point estimates of 270 individuals in 1990 to 483 in 2010, and then declined to 2015, when the final estimate was 458 individuals (95% credible intervals 444–471). The probability that the population's trajectory post‐2010 was a decline was estimated at 99.99%. Of special concern was the finding that reduced survival rates of adult females relative to adult males have produced diverging abundance trends between sexes. Despite constraints in recent years, both biological (whales' distribution changing) and logistical (fewer resources available to collect individual photo‐identifications), it is still possible to detect this relatively recent, small change in the population's trajectory. This is thanks to the massive dataset of individual North Atlantic right whale identifications accrued over the past three decades. Photo‐identification data provide biological information that allows more informed inference on the status of this species.  相似文献   

8.
Marker-loss is a common feature of mark–recapture studies and important as it may bias parameter estimation. A slight alteration in tag-site of double tagged southern elephant seals (Mirounga leonina), marked at Marion Island from 1983 to 2005 in an ongoing mark–recapture program, had important consequences for tag-loss. We calculated age-specific tag-retention rates and cumulative tag-retention probabilities using a maximum likelihood model selection approach in the software application TAG_LOSS 3.2.0. Under the tag-loss independence assumption, double tag-loss of inner interdigital webbing tags (IIT; 17 cohorts) remained below 1% in the first 5 yr and increased monotonically as seals aged, with higher tag-loss in males. Lifetime cumulative IIT tag-loss was 11.9% for females and 18.4% for males, and equivalent for all cohorts. Changing the tag-site to the outer interdigital webbing (OIT; 6 cohorts) resulted in increased and cohort-dependent tag-loss, although the variation (mean ± 95% CI) in cumulative tag-loss probabilities never exceeded 5.3% between cohorts at similar age. Although different studies may homogenize techniques, we advocate the importance of data set-specific assessment of tag-loss rates to ensure greatest confidence in population parameters obtained from mark–recapture experiments. Permanent marking should be implemented where feasible.  相似文献   

9.
Estimating the relative abundance (prevalence) of different population segments is a key step in addressing fundamental research questions in ecology, evolution, and conservation. The raw percentage of individuals in the sample (naive prevalence) is generally used for this purpose, but it is likely to be subject to two main sources of bias. First, the detectability of individuals is ignored; second, classification errors may occur due to some inherent limits of the diagnostic methods. We developed a hidden Markov (also known as multievent) capture–recapture model to estimate prevalence in free‐ranging populations accounting for imperfect detectability and uncertainty in individual's classification. We carried out a simulation study to compare naive and model‐based estimates of prevalence and assess the performance of our model under different sampling scenarios. We then illustrate our method with a real‐world case study of estimating the prevalence of wolf (Canis lupus) and dog (Canis lupus familiaris) hybrids in a wolf population in northern Italy. We showed that the prevalence of hybrids could be estimated while accounting for both detectability and classification uncertainty. Model‐based prevalence consistently had better performance than naive prevalence in the presence of differential detectability and assignment probability and was unbiased for sampling scenarios with high detectability. We also showed that ignoring detectability and uncertainty in the wolf case study would lead to underestimating the prevalence of hybrids. Our results underline the importance of a model‐based approach to obtain unbiased estimates of prevalence of different population segments. Our model can be adapted to any taxa, and it can be used to estimate absolute abundance and prevalence in a variety of cases involving imperfect detection and uncertainty in classification of individuals (e.g., sex ratio, proportion of breeders, and prevalence of infected individuals).  相似文献   

10.
The presence of unmarked individuals is common in mark–recapture study populations; however, their origin and significance in terms of population dynamics remain poorly understood. At Marion Island, southern Indian Ocean, where virtually all southern elephant seal Mirounga leonina pups born annually (1983–2008) were marked in a long‐term mark–resight study, large numbers of unmarked seals occur. Unmarked seals originate either from marker (tag) loss or from immigration. We aimed to identify patterns in the occurrence of marked and unmarked individuals that will allude to the possible origin and significance of the untagged component of the population, predicting that tag loss will add untagged seals to mainly adult age categories whereas migrating untagged individuals will be mostly juveniles. We fitted a generalized linear model using the factors month, year and age‐class to explain the relative abundance of untagged seals (tag ratio) from 1997 to 2009. Site usage of untagged seals relative to tagged seals was assessed using a binomial test. Untagged seals, predominantly juveniles, were present in the highest proportions relative to tagged seals during the winter haulout (tagged seals/total seals less than 0.3) and the lowest proportion (approximately 0.5) during the female breeding haulout, increasing in relative abundance from 1997 to 2009. Untagged seals were distributed evenly across suitable haulout sites while tagged seals displayed high local site fidelity and occurred in greater numbers at or near large breeding beaches. Untagged seals are considered to be mostly migrant seals that disperse from other islands within the southern Indian Ocean and haul out at Marion Island during non‐breeding haulouts in particular. Some of these seals immigrate to the breeding population, which can be a key component of the local population dynamics. We emphasize the need for mark–recapture studies to evaluate the role of the unmarked component of a population, thereby inducing a more confident estimation of demographic parameters from the marked sample.  相似文献   

11.
Population studies often incorporate capture‐mark‐recapture (CMR) techniques to gather information on long‐term biological and demographic characteristics. A fundamental requirement for CMR studies is that an individual must be uniquely and permanently marked to ensure reliable reidentification throughout its lifespan. Photographic identification involving automated photographic identification software has become a popular and efficient noninvasive method for identifying individuals based on natural markings. However, few studies have (a) robustly assessed the performance of automated programs by using a double‐marking system or (b) determined their efficacy for long‐term studies by incorporating multi‐year data. Here, we evaluated the performance of the program Interactive Individual Identification System (I3S) by cross‐validating photographic identifications based on the head scale pattern of the prairie lizard (Sceloporus consobrinus) with individual microsatellite genotyping (N = 863). Further, we assessed the efficacy of the program to identify individuals over time by comparing error rates between within‐year and between‐year recaptures. Recaptured lizards were correctly identified by I3S in 94.1% of cases. We estimated a false rejection rate (FRR) of 5.9% and a false acceptance rate (FAR) of 0%. By using I3S, we correctly identified 97.8% of within‐year recaptures (FRR = 2.2%; FAR = 0%) and 91.1% of between‐year recaptures (FRR = 8.9%; FAR = 0%). Misidentifications were primarily due to poor photograph quality (N = 4). However, two misidentifications were caused by indistinct scale configuration due to scale damage (N = 1) and ontogenetic changes in head scalation between capture events (N = 1). We conclude that automated photographic identification based on head scale patterns is a reliable and accurate method for identifying individuals over time. Because many lizard or reptilian species possess variable head squamation, this method has potential for successful application in many species.  相似文献   

12.
The federally endangered Cumberlandian combshell (Epioblasma brevidens) was propagated and reared to taggable size (5–10 mm), and released to the Powell River, Tennessee, to augment a relict population. Methodology using passive integrated transponder (PIT) tags on these mussels greatly facilitated the detection process. The overall mean detection probability and survival rate of released individuals reached 97.8 to 98.4% and 99.7 to 99.9% (per month), respectively, during nine successive recapture occasions in the 2‐year study period, regardless of seasonality. Nonhierarchical models and hierarchical models incorporating individual and seasonal variations through a Bayesian approach were compared and resulted in similar performance of prediction for detection probability and survival rate of mussels. This is the first study to apply the mark–recapture method to laboratory‐reared mussels using PIT tags and stochastic models. Quantitative analyses for individual heterogeneity allowed examination of demographic variance and effects of heterogeneity on population dynamics, although the individual and seasonal variations were small in this study. Our results provide useful information in implementing conservation strategies of this faunal group and a framework for other species or similar studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号