首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Achieving a maximal safe extent of resection during brain tumor surgery is the goal for improved patient prognosis. Fluorescence‐guided neurosurgery using 5‐aminolevulinic acid (5‐ALA) induced protoporphyrin IX has thereby become a valuable tool enabling a high frequency of complete resections and a prolonged progression‐free survival in glioblastoma patients. We present a widefield fluorescence lifetime imaging device with 250 mm working distance, working under similar conditions such as surgical microscopes based on a time‐of‐flight dual tap CMOS camera. In contrast to intensity‐based fluorescence imaging, our method is invariant to light scattering and absorption while being sensitive to the molecular composition of the tissue. We evaluate the feasibility of lifetime imaging of protoporphyrin IX using our system to analyze brain tumor phantoms and fresh 5‐ALA‐labeled human tissue samples. The results demonstrate the potential of our lifetime sensing device to go beyond the limitation of current intensity‐based fluorescence‐guided neurosurgery.   相似文献   

2.
Currently, the targeted treatment of tumor based on the tumor microenvironment is newly developed. Blood vessels are the key parts in the tumor microenvironment, which is taken as a new visible target for tumor therapy. Multiphoton microscopy (MPM), based on the second harmonic generation and two‐photon excited fluorescence, is available to make the label‐free analysis on the blood vessels in human gliomas. MPM can reveal the vascular morphological characteristics in gliomas, including vascular malformation, intense vascular proliferation, perivascular collagen deposition, perivascular lymphocytes aggregation and microvascular proliferation. In addition, the image analysis algorithms were developed to automatically calculate the perivascular collagen content, vascular cavity area, lumen area, wall area and vessel number. Thus, the vascular morphology, the perivascular collagen deposition and intense vascular proliferation degree can be further quantitatively characterized. Compared with the pathological analysis, the combination of MPM and image analysis has potential advantages in making a quantitative and qualitative analyzing on vascular morphology in glioma microenvironment. As micro‐endoscope and two‐photon fiberscope are technologically improved, this combined method will be a useful imaging way to make the real‐time research on the targeting tumor microenvironment in gliomas.  相似文献   

3.
Stroke is a significant cause of morbidity and long‐term disability globally. Detection of injured neuron is a prerequisite for defining the degree of focal ischemic brain injury, which can be used to guide further therapy. Here, we demonstrate the capability of two‐photon microscopy (TPM) to label‐freely identify injured neurons on unstained thin section and fresh tissue of rat cerebral ischemia‐reperfusion model, revealing definite diagnostic features compared with conventional staining images. Moreover, a deep learning model based on convolutional neural network is developed to automatically detect the location of injured neurons on TPM images. We then apply deep learning‐assisted TPM to evaluate the ischemic regions based on tissue edema, two‐photon excited fluorescence signal intensity, as well as neuronal injury, presenting a novel manner for identifying the infarct core, peri‐infarct area, and remote area. These results propose an automated and label‐free method that could provide supplementary information to augment the diagnostic accuracy, as well as hold the potential to be used as an intravital diagnostic tool for evaluating the effectiveness of drug interventions and predicting potential therapeutics.  相似文献   

4.
Nonlinear multimodal microscopy offers a series of label‐free techniques with potential for intraoperative identification of tumor borders in situ using novel endoscopic devices. Here, we combined coherent anti‐Stokes Raman scattering, two‐photon excited fluorescence (TPEF) and second harmonic generation imaging to analyze biopsies of different human brain tumors, with the aim to understand whether the morphological information carried by single field of view images, similar to what delivered by present endoscopic systems, is sufficient for tumor recognition. We imaged 40 human biopsies of high and low grade glioma, meningioma, as well as brain metastases of melanoma, breast, lung and renal carcinoma, in comparison with normal brain parenchyma. Furthermore, five biopsies of schwannoma were analyzed and compared with nonpathological nerve tissue. Besides the high cellularity, the typical features of tumor, which were identified and quantified, are intracellular and extracellular lipid droplets, aberrant vessels, extracellular matrix collagen and diffuse TPEF. Each tumor type displayed a particular morphochemistry characterized by specific patterns of the above‐mentioned features. Nonlinear multimodal microscopy performed on fresh unprocessed biopsies confirmed that the technique has the ability to visualize tumor structures and discern normal from neoplastic tissue likewise in conditions close to in situ.   相似文献   

5.
A rapid, simple and sensitive label‐free fluorescence method was developed for the determination of trace amounts of an important drug, heparin. This new method was based on water‐soluble glutathione‐capped CdTe quantum dots (CdTe QDs) as the luminescent probe. CdTe QDs were prepared according to the published protocol and the sizes of these nanoparticles were verified through transmission electron microscopy (TEM), X‐ray diffraction (XRD) and dynamic light scattering (DLS) with an average particle size of about 7 nm. The fluorescence intensity of glutathione‐capped CdTe QDs increased with increasing heparin concentration. These changes were followed as the analytical signal. Effective variables such as pH, QD concentration and incubation time were optimized. At the optimum conditions, with this optical method, heparin could be measured within the range 10.0–200.0 ng mL?1 with a low limit of detection, 2.0 ng mL?1. The constructed fluorescence sensor was also applied successfully for the determination of heparin in human serum. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The feasibility of using a polymerase chain reaction (PCR)‐based label‐free DNA sensor for the detection of Helicobacter pylori is investigated. In particular, H. pylori ureC gene, a specific H. pylori nucleic acid sequence, was selected as the target sequence. In the presence of ureC gene, the target DNA could be amplified to dsDNA with much higher detectable levels. After added the SYBR green I (SGI), the sensing system could show high fluorescence. Thus, the target DNA can be detected by monitoring the change of fluorescence intensity of sensing system. The clinical performance of this method was determined by comparing it with another conventional technique urea breath test (UBT). The result also showed good distinguishing ability between negative and positive patient, which was in good agreement with that obtained by the UBT. It suggests that the label‐free fluorescence‐based method is more suitable for infection confirmation test of H. pylori. This approach offers great potential for simple, sensitive and cost‐effective identification of H. pylori infection.  相似文献   

7.
We introduce a simple new approach for time‐resolved multiplexed analysis of complex systems using near‐infrared (NIR) dyes, applicable to in vitro and in vivo studies. We show that fast and precise in vitro quantification of NIR fluorophores' short (subnanosecond) lifetime and stoichiometry can be done using phasor analysis, a computationally efficient and user‐friendly representation of complex fluorescence intensity decays obtained with pulsed laser excitation and time‐gated camera imaging. We apply this approach to the study of binding equilibria by Förster resonant energy transfer using two different model systems: primary/secondary antibody binding in vitro and ligand/receptor binding in cell cultures. We then extend it to dynamic imaging of the pharmacokinetics of transferrin engagement with the transferrin receptor in live mice, elucidating the kinetics of differential transferrin accumulation in specific organs, straightforwardly differentiating specific from nonspecific binding. Our method, implemented in a freely‐available software, has the advantage of time‐resolved NIR imaging, including better tissue penetration and background‐free imaging, but simplifies and considerably speeds up data processing and interpretation, while remaining quantitative. These advances make this method attractive and of broad applicability for in vitro and in vivo molecular imaging and could be extended to applications as diverse as image‐guided surgery or optical tomography.   相似文献   

8.
Cell death plays a critical role in health and homeostasis as well as in the pathogenesis and treatment of a broad spectrum of diseases and can be broadly divided into two main categories: apoptosis, or programmed cell death, and necrosis, or acute cell death. While these processes have been characterized extensively in vitro, label‐free detection of apoptosis and necrosis at the cellular level in vivo has yet to be shown. In this study, for the first time, fluorescence lifetime imaging microscopy (FLIM) of intracellular reduced nicotinamide adenine dinucleotide (NADH) was utilized to assess the metabolic response of in vivo mouse epidermal keratinocytes following induction of apoptosis and necrosis. Results show significantly elevated levels of both the mean lifetime of NADH and the intracellular ratio of protein bound‐to‐free NADH in the apoptotic compared to the necrotic tissue. In addition, the longitudinal profiles of these two cell death processes show remarkable differences. By identifying and extracting these temporal metabolic signatures, apoptosis in single cells can be studied in native tissue environments within the living organism.

  相似文献   


9.
Blood coagulation mechanisms forming a blood clot and preventing hemorrhage have been extensively studied in the last decades. Knowing the mechanisms behind becomes very important particularly in the case of blood vessel diseases. Real‐time and accurate diagnostics accompanied by the therapy are particularly needed, for example, in diseases related to retinal vasculature. In our study, we employ for the first time fluorescence hyperspectral imaging (fHSI) combined with the spectral analysis algorithm concept to assess physical as well as functional information of blood coagulation in real‐time. By laser‐induced local disruption of retinal vessels to mimic blood leaking and subsequent coagulation and a proper fitting algorithm, we were able to reveal and quantify the extent of local blood coagulation through direct identification of the change of oxyhemoglobin concentration within few minutes. We confirmed and illuminated the spatio‐temporal evolution of the essential role of erythrocytes in the coagulation cascade as the suppliers of oxygenated hemoglobin. By additional optical tweezers force manipulation, we showed immediate aggregation of erythrocytes at the coagulation site. The presented fluorescence‐based imaging concept could become a valuable tool in various blood coagulation diagnostics as well as theranostic systems if coupled with the laser therapy.  相似文献   

10.
The discovery that the lipids constituting the plasma membrane are not randomly distributed, but instead are able to form laterally segregated lipid domains with different properties has given hints how the formation of such lipid domains influences and regulates many processes occurring at the plasma membrane. While in model systems these lipid domains can be easily accessed and their properties studied, it is still challenging to determine the properties of cholesterol rich lipid domains, the so called “Rafts”, in the plasma membrane of living cells due to their small size and transient nature. One promising technique to address such issues is fluorescence lifetime imaging (FLIM) microscopy, as spatially resolved images make the visualization of the lateral lipid distribution possible, while at the same time the fluorescence lifetime of a membrane probe yields information about the bilayer structure and organization of the lipids in lipid domains and various properties like preferential protein-protein interactions or the enrichment of membrane probes. This review aims to give an overview of the techniques underlying FLIM probes which can be applied to investigate the formation of lipid domains and their respective properties in model membrane and biological systems. Also a short technical introduction into the techniques of a FLIM microscope is given.  相似文献   

11.
Applying intravital fluorescence microscopy, we assessed sinusoidal delivery and biliary clearance of two different polymethine dyes. DY635, a benzopyrylium‐based hemocyanine dye with shorter excitation wavelength than indocyanine green (ICG), was validated for assessment of hepatic excretory function. Decrease of DY635 and ICG reflecting transcellular transport was 83 ± 4% (DY635) and 14 ± 2% (ICG; p < 0.05) over 35 minutes, respectively. In cholestasis, hepatobiliary excretion of DY635 was markedly impaired (control 3176 ± 148 pmol vs. cholestatic 1929 ± 179 pmol; p < 0.05). DY635 even enabled an analysis at high resolution suggesting 1.) hepatocyte uncoupling and 2.) failure of primarily the canalicular pole, allowing in vivo insights into molecular mechanisms of this critical facet of hepatobiliary function. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Neoadjuvant chemotherapy is increasingly being used in breast carcinoma as it significantly improves the prognosis and consistently leads to an increased rate of breast preservation. How to accurately assess tumor response after treatment is a crucial factor for developing reasonable therapeutic strategy. In this study, we were in an attempt to monitor tumor response by multimodal multiphoton imaging including two‐photon excitation fluorescence and second‐harmonic generation imaging. We found that multiphoton imaging can identify different degrees of tumor response such as a slight, significant, or complete response and can detect morphological alteration associated with extracellular matrix during the progression of breast carcinoma following preoperative chemotherapy. Two quantitative optical biomarkers including tumor cellularity and collagen content were extracted based on automatic image analysis to help monitor changes in tumor and its microenvironment. Furthermore, tumor regression grade diagnosis was tried to evaluate by multiphoton microscopy. These results may offer a basic framework for using multiphoton microscopic imaging techniques as a helpful diagnostic tool for assessing breast carcinoma response after presurgical treatment.  相似文献   

13.
Endometriosis (EM) impacts the healthcare and the quality of life for women of reproductive age. However, there is no reliable noninvasive diagnosis method for either animal study or clinical use. In this work, a novel imaging method, photoacoustic microscopy (PAM) was employed to study the EM on the mouse model. Our results demonstrated the PAM noninvasively provided the high contrast and 3D imaging of subcutaneously implanted EM tissue in the nude mouse in vivo. The statistical study also indicated PAM had high sensitivity and specificity in the diagnosis of EM in this animal study. In addition, we also discussed the potential clinical application for PAM in the diagnosis of EM. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

14.
We present a clinical investigation of diffuse reflectance and time‐resolved autofluorescence spectra of skin cancer with an emphasis on basal cell carcinoma. A total of 25 patients were measured using a compact steady‐state diffuse reflectance/fluorescence spectrometer and a fibre‐optic‐coupled multispectral time‐resolved spectrofluorometer. Measurements were performed in vivo prior to surgical excision of the investigated region. Singular value decomposition was used to reduce the dimensionality of steady state diffuse reflectance and fluorescence spectra. Linear discriminant analysis was then applied to the measurements of basal cell carcinomas (BCCs) and used to predict the tissue disease state with a leave‐one‐out methodology. This approach was able to correctly diagnose 87% of the BCCs. With 445 nm excitation a decrease in the spectrally averaged fluorescence lifetime was observed between normal tissue and BCC lesions with a mean value of 886 ps. Furthermore, the fluorescence lifetime for BCCs was lower than that of the surrounding healthy tissue in all cases and statistical analysis of the data revealed that this decrease was significant (p = 0.002). (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Matrix metalloproteinase (MMP)‐2 and ‐9 play important roles in the progression of atherosclerosis. This study aims to determine whether MMP‐2 and ‐9 content in the fibrotic caps of atherosclerotic plaque is correlated with plaque autofluorescence. A time‐resolved laser‐induced fluorescence spectroscopy (TR‐LIFS) system was used to measure the autofluorescence and assess the biochemical composition of human plaques obtained from carotid endarterectomy. Results presented here demonstrate for the first time the ability to characterize the biochemical composition as it relates to MMP‐2 and ‐9 content in the atherosclerotic plaque cap using a label‐free imaging technique implemented with a fiberoptic TR‐LIFS system. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The heart has high metabolic demand to maintain function. The primary source of energy supply to support correct contractile muscle function differs between a fetus and an adult. In fetal life, ATP is primarily generated by glycolysis and lactate oxidation, whereas following birth, there is a shift towards a reliance on mitochondrial metabolism and fatty acid oxidation. This change in metabolic status is an adaptation to different fuel availability, oxygenation and growth patterns. In this study, we have employed 2‐photon excitation fluorescence microscopy to define the relationship between two critical metabolic cofactors nicotinamide adenine dinucleotide(P)H and flavin adenine dinucleotide, effectively utilizing a redox ratio to differentiate between the metabolic status in fetal (proliferative) and adult (quiescent/hypertrophic) hearts. Two‐photon imaging was also used to visually confirm the known increase in collagen deposition in the adult heart. The changes observed were consistent with a hypertrophic growth profile and greater availability of fatty acids in the adult heart, compared to the proliferative fetal heart. Two‐photon excitation fluorescence microscopy is therefore a convenient imaging technology that enables the monitoring of striated muscle architecture and the metabolic status of heart tissue. This imaging technology can potentially be employed to visualize cardiac and other muscle pathologies.   相似文献   

17.
In the current clinical care practice, Gleason grading system is one of the most powerful prognostic predictors for prostate cancer (PCa). The grading system is based on the architectural pattern of cancerous epithelium in histological images. However, the standard procedure of histological examination often involves complicated tissue fixation and staining, which are time‐consuming and may delay the diagnosis and surgery. In this study, label‐free multiphoton microscopy (MPM) was used to acquire subcellular‐resolution images of unstained prostate tissues. Then, a deep learning architecture (U‐net) was introduced for epithelium segmentation of prostate tissues in MPM images. The obtained segmentation results were then merged with the original MPM images to train a classification network (AlexNet) for automated Gleason grading. The developed method achieved an overall pixel accuracy of 92.3% with a mean F1 score of 0.839 for epithelium segmentation. By merging the segmentation results with the MPM images, the accuracy of Gleason grading was improved from 72.42% to 81.13% in hold‐out test set. Our results suggest that MPM in combination with deep learning holds the potential to be used as a fast and powerful clinical tool for PCa diagnosis.  相似文献   

18.
Accurate detection of early tumor margin is of great preclinical and clinical implications for predicting the survival rate of subjects and assessing the response of tumor microenvironment to chemotherapy or radiation therapy. Here, we report a multimodality optical imaging study on in vivo detection of tumor boundary by analyzing neoangiogenesis of tumor microenvironment (microangiography), microcirculatory blood flow (optical Doppler tomography) and tumor proliferation (green fluorescent protein [GFP] fluorescence). Microangiography demonstrates superior sensitivity (77.7 ± 6.4%) and specificity (98.2 ± 1.7%) over other imaging technologies (eg, optical coherence tomography) for tumor margin detection. Additionally, we report longitudinal in vivo imaging of tumor progression and show that the abrupt tumor cell proliferation did not occur until local capillary density and cerebral blood flow reached their peak approximately 2 weeks after tumor implantation. The unique capability of longitudinal multimodality imaging of tumor angiogenesis may provide new insights in tumor biology and in vivo assessment of the treatment effects on anti‐angiogenesis therapy for brain cancer.  相似文献   

19.
Objective measurements of melanin can provide important information for differentiating melanoma from benign pigmented lesions and in assessing pigmentary diseases. Herein, we evaluate near‐infrared (NIR) fluorescence as a possible tool to quantify melanin. Various concentrations of in vitro Sepia melanin in tissue phantoms were measured with NIR fluorescence and diffuse reflectance spectroscopy. Similar optic measurements were conducted in vivo on 161 normal human skin sites. Diffuse reflectance spectroscopy was used to quantify the melanin content via Stamatas–Kollias algorithm. At physiologic concentrations, increasing in vitro melanin concentrations demonstrated higher fluorescence that was linearly correlated (R2 = 0.99, p < .001). At higher concentrations, the fluorescence signal plateaued. A linear relationship was also observed with melanin content in human skin (R2 = 0.59, p < .001). Comparing the fluorescence and reflectance signals with in vitro and in vivo samples, the estimated melanin concentration in human skin ranged between 0 and 1.25 mg/ml, consistent with previous quantitative studies involving invasive methods.  相似文献   

20.
Multispectral and hyperspectral imaging (HSI) are emerging optical imaging techniques with the potential to transform the way surgery is performed but it is not clear whether current systems are capable of delivering real‐time tissue characterization and surgical guidance. We conducted a systematic review of surgical in vivo label‐free multispectral and HSI systems that have been assessed intraoperatively in adult patients, published over a 10‐year period to May 2018. We analysed 14 studies including 8 different HSI systems. Current in‐vivo HSI systems generate an intraoperative tissue oxygenation map or enable tumour detection. Intraoperative tissue oxygenation measurements may help to predict those patients at risk of postoperative complications and in‐vivo intraoperative tissue characterization may be performed with high specificity and sensitivity. All systems utilized a line‐scanning or wavelength‐scanning method but the spectral range and number of spectral bands employed varied significantly between studies and according to the system's clinical aim. The time to acquire a hyperspectral cube dataset ranged between 5 and 30 seconds. No safety concerns were reported in any studies. A small number of studies have demonstrated the capabilities of intraoperative in‐vivo label‐free HSI but further work is needed to fully integrate it into the current surgical workflow.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号