首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, 573 nm quantum dots (QDs)-rabbit IgG-goat anti-rabbit IgG-638 nm QDs immunocomplexes were prepared, utilizing antigen-antibody interaction. 573 nm-emitting QDs were conjugated to antigen (rabbit IgG) and 638 nm-emitting QDs were conjugated to antibody (goat anti-rabbit IgG) via electrostatic/hydrophilic self-assembly, respectively. The mutual affinity of the antigen and antibody brought two kinds of QDs close enough to result in fluorescence resonance energy transfer (FRET) between them; the luminescence emission of 573 nm QDs was quenched, while that of 638 nm QDs was enhanced. The luminescence emission of 573 nm QDs could be recovered when the immunocomplexes were exposed to the unlabelled rabbit IgG antigen. The FRET efficiency (E) and the distance between the donor and the acceptor were calculated.  相似文献   

2.
We report a fluorescence resonance energy transfer (FRET) system in which the fluorescent donor is fluorescein isothiocyanate (FITC) dye and the fluorescent acceptor is CdTe quantum dot (QDs). Based on FRET quenching theory, we designed a method to detect the concentration of silver ions (Ag+). The results revealed a good linear trend over Ag+ concentrations in the range 0.01–8.96 nmol/L, a range that was larger than with other methods; the quenching coefficient is 0.442. The FRET mechanism and physical mechanisms responsible for dynamic quenching are also discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
When excited at 435 nm, tetra‐sulfonate zinc phthalocyanine (ZnPcS4) emitted dual fluorescence at 495 and 702 nm. The abnormal fluorescence at 495 nm was experimentally studied and analyzed in detail for the first time. The abnormal fluorescence at 495 nm was deduced to originate from triplet–triplet (T–T) energy transfer of excited phthalocyanine (3*ZnPcS4). Furthermore, graphene quantum dots (GQDs) enhanced the 495 nm fluorescence quantum yield (Q) of ZnPcS4. The fluorescence properties of ZnPcS4–GQDs conjugate were retained in a cellular environment. Based on the fluorescence of ZnPcS4–GQDs conjugate, we designed and prepared an Apt29/thrombin/Apt15 sandwich thrombin sensor with high specificity and affinity. This cost‐saving, simple operational sensing strategy can be extended to use in sensing/imaging of other biomolecules.  相似文献   

4.
Chunchuan Gu 《Luminescence》2017,32(7):1186-1191
The development of advanced methods for accurately monitoring cell apoptosis has extensive significance in the diagnostic and pharmaceutical fields. In this study, we developed a rapid, sensitive and selective approach for the detection of cell apoptosis by combining the site‐specific recognition and cleavage of the DEVD–peptide with quantum dots (QDs)‐based fluorescence resonance energy transfer (FRET). Firstly, biotin‐peptide was conjugated on the surface of AuNPs to form AuNPs‐pep through the formation of an Au‐S bond. Then, AuNPs–pep–QDs nanoprobe was obtained through the connection between AuNPs–pep and QDs. FRET is on and the fluorescence of QDs is quenched at this point. The evidence of UV–vis spectra, transmission electron microscopy (TEM), and Fourier transform infrared (FT‐IR) spectroscopy revealed that the connection was successful. Upon the addition of apoptosis cell lysis solution, peptide was cleaved by caspase‐3, and AuNPs was dissociated from the QDs. At this time, FRET is off, and thus the QDs fluorescence was recovered. The experimental conditions were optimized in terms of ratio of peptide to AuNPs, buffer solution, and the temperature of conjugation and enzyme reaction. The biosensor was successfully applied to distinguishing apoptosis cells and normal cells within 2 h. This study demonstrated that the biosensor could be utilized to evaluate anticancer drugs.  相似文献   

5.
The linkage of unsymmetrically monosubstituted 4-aminophenoxy zinc phthalocyanine (ZnAPPc, 5) to CdTe quantum dots capped with mercaptopropionic acid (MPA), l-cysteine (l-cys) or thioglycolic acid (TGA) has been achieved using the coupling agents ethyl-N(3-dimethylaminopropyl) carbodiimide and N-hydroxy succinimide, which facilitate formation of an amide bond to form the QD-ZnAPPc-linked conjugate. The formation of the amide bond was confirmed using Raman and IR spectroscopies. Atomic force microscopy (AFM) and UV-Vis spectroscopy were used further to characterise the conjugate. Förster resonance energy transfer (FRET) resulted in stimulated emission of ZnAPPc in both the linked (QD-ZnAPPc-linked) and mixed (QD:ZnAPPc-mixed) conjugates. The linked l-cys and TGA QDs conjugates (QD-ZnAPPc-linked) gave the largest FRET efficiencies hence showing the advantages of covalent linking. Fluorescence quantum yields of QDs were decreased in QD:ZnAPPc-mixed and QD:ZnAPPc-linked.  相似文献   

6.
A sensitive and simple analytical strategy for the detection of sodium cromoglycate (SCG) has been established based on a readily detectable fluorescence quenching effect of SCG for glutathione‐capped (GSH‐capped) CdTe quantum dots (QDs). The fluorescence of GSH‐capped CdTe QDs could be efficiently quenched by SCG through electron transfer from GSH‐capped CdTe QDs to SCG. Under optimum conditions, the response was linearly proportional to the concentration of SCG between 0.6419 and 100 µg/mL, with a correlation coefficient (R) of 0.9964; the detection limit (3δ/K) was 0.1926 µg/mL. The optimum conditions and the influence of coexisting foreign substances on the reaction were also investigated. The very effective and simple method reported here has been successfully applied to the determination of SCG in synthetic and real samples. It is believed that the established approach could have good prospects for application in the fields of clinical diseases diagnosis and treatment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The water‐soluble luminescent CdSe quantum dots were prepared by ligand exchange with triethanolamine (TEA). Oxygen can reversibly enhance the fluorescence of the synthesized quantum dots (TEA‐CdSe‐QDs) in aqueous solution. Nitric oxide radical (NO) can react easily with dissolved oxygen in water and was found to have a significant quenching effect on the fluorescence of the TEA‐CdSe‐QDs. The fluorescence responses were concentration‐dependent and can be well described by the typical Stern–Volmer equation. A good linear relationship (R= 0.9963) was observed over the range 5.92 × 10?7 to 1.85 × 10?5 mol/L nitric oxide. Above this concentration was a second linear region ranging from 2.12 × 10?5 to 1.12 × 10?4 mol/L NO with a gentler slope. The detection limit, calculated following the 3σ IUPAC criteria, was 3.02 × 10?7 mol/L. The interference effect of some common interferents such as nitrite (NO2?), nitrate (NO3?), glucose and l ‐ascorbic acid on the detection of NO was negligible for the proposed system, demonstrating the potential utility of this probe for the detection of NO in biological systems. The possible mechanism was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A novel method is used for the determination of some aminoglycoside antibiotics (AGs) such as etimicin (ETM), isepamicin (ISP) and amikacin (AMK). It is based on the resonance Rayleigh scattering (RRS) intensities enhanced by AGs‐induced CdTe quantum dots aggregation. Under the optimum conditions, the increments in RRS intensity were directly proportional to the concentration of AGs in certain ranges. At the same time, the second‐order scattering, the frequency‐doubling scattering and the frequency‐trebling scattering intensities were also enhanced and their increments were proportional to the concentration of AGs. Among them, the RRS method had the highest sensitivity; the linear ranges and detection limits for ETM, ISP and AMK were 0.085–7.2, 0.0067–1.2, 0.017–6.0 and 0.025, 0.0051, 0.0020 μg mL?1. This method was applied to the measurement of AGs in human serum and urine with satisfactory results. In addition, the reaction mechanism and the reasons for the enhancement of RRS are discussed using fluorescence, RRS, transmission electron microscope technology and quantum chemistry method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A facile method was developed for the preparation of water soluble β‐Cyclodextrin (β‐CD)‐modified CdSe quantum dots (QDs) (β‐CD‐QDs) by directly replacing the oleic acid ligands on the QDs surface with β‐CD in an alkaline aqueous solution. The as‐prepared QDs show good stability in aqueous solution for several months. Oxoanions, including phosphoric acid ion, sulphite acid ion and carbonic acid ion, affect the fluorescence of β‐CD‐QDs. Among them, H2PO4 exhibited the largest quenching effect. For the polyprotic acids (HO)3AO, the effect of acidic anions on the fluorescence of β‐CD‐QDs was in the order: monoanion (HO)2AO2 > dianion (HO)AO32– >> trianion AO43–. After photoactivation for several days in the presence of anions at alkaline pH, the β‐CD‐QDs exhibited strong fluorescence emission. The effect of various heavy and transition metal ions on the fluorescence properties of the β‐CD‐QDs was investigated further. It was found that Ag+, Hg2+ and Co2+ have significant quenching effect on the fluorescence of the β‐CD‐QDs. The Stern–Volmer quenching constants increased in the order: Hg2+ < Co2+ <Ag+. The adsorption model of metal ions on β‐CD‐QDs was explored. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
An HPLC system combining a chemiluminescence detector was applied to estimate the singlet oxygen (1O2) generation ability of di‐sulfonic phthalocyanine zinc (ZnPcS2) isomers. As photosensitizers, ZnPcS2 produces 1O2 in air‐saturated solutions under photoirradiation. The latter reacts with methyl Cypridina luciferin analogue (MCLA) to initiate chemiluminescence. This photoinduced chemiluminescence (PCL) of MCLA provides an easy method for evaluating the isomers' 1O2 generation ability during a simultaneous HPLC separation procedure. The cis‐isomers and trans‐isomers of ZnPcS2 show different 1O2 generation abilities, which are in accordance with differences in their absorption spectra. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, a high fluorescence sensitivity and selectivity, molecularly imprinted nanofluorescent polymer sensor (MIP@SiO2@QDs) was prepared using a reverse microemulsion method. 2,4,6‐Trichlorophenol (2,4,6‐TCP) was detected using fluorescence quenching. Tetraethyl orthosilicate (TEOS), quantum dots (QDs) and 3‐aminopropyltriethoxysilane (APTS) were used as cross‐linker, signal sources and functional monomer respectively. The sensor (MIP@SiO2@QDs) and the non‐imprinted polymer sensor (NIP@SiO2@QDs) were characterized using infra‐red (IR) analysis, X‐ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The selectivity of MIP@SiO2@QDs was examined by comparing 2,4,6‐TCP with other similar functional substances including 2,4‐dichlorophenol (2,4‐DCP), 2,6‐dichlorophenol (2,6‐DCP) and 4‐chlorophenol (4‐CP). Results showed that MIP@SiO2@QDs had better selectivity for 2,4,6‐TCP than the other compounds. Fluorescence quenching efficiency displayed a good linear response at the 2,4,6‐TCP concentration range 5–1000 μmol/L. The limit of detection (LOD) was 0.9 μmol/L (3σ, n = 9). This method was equally applicable for testing actual samples with a recovery rate of 98.0–105.8%. The sensor had advantages of simple pretreatment, good sensitivity and selectivity, and wide linear range and could be applied for the rapid detection of 2,4,6‐TCP in actual samples.  相似文献   

12.
A novel fluorescence assay system for glucose was developed with thioglycollic acid (TGA)‐capped CdTe quantum dots (QDs) as probes. The luminescence quantum yield of the TGA‐capped CdTe QDs was highly sensitive to H2O2 and pH. In the presence of glucose oxidase, glucose is oxidized to yield, gluconic acid and H2O2. H2O2 and H+ (dissociated from gluconic acid) intensively quenched the fluorescence of QDs. The experimental results showed that the quenched fluorescence was proportional to the glucose concentration within the range of 0.01–5.0 mm under optimized experimental conditions. Compared with most of the existing methods, this newly developed system possesses many advantages, including simplicity, low cost, high flexibility, and good sensitivity. Furthermore, no complicated chemical modification of QDs and enzyme immobilization was needed in this system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
14.
The interaction of glucose‐derived carbon quantum dots (CQDs) with silver (Ag) and gold (Au) nanoparticles (NPs) was explored by fluorescence spectroscopy. Both metal NPs cause an efficient quenching of CQD fluorescence, which is likely due to the energy transfer process between CQDs as donors and metal NPs as acceptors. The Stern–Volmer plots were evaluated and corresponding quenching constants were found to be 1.9 × 1010 and 2.2 × 108 M?1 for AgNPs and AuNPs, respectively. The analytical applicability of these systems was demonstrated for turn‐on fluorescence detection of the anti‐cancer drug, 6‐thioguanine. Because the CQD–AgNP system had much higher sensitivity than the CQD–AuNP system, we used it as a selective fluorescence probe in a turn‐on assay of 6‐thioguanine. Under optimum conditions, the calibration graph was linear from 0.03 to 1.0 μM with a detection limit of 0.01 μM. The developed method was applied to the analysis of human plasma samples with satisfactory results.  相似文献   

15.
It is presented for the first time nontoxic CuGaS2/ZnS quantum dots (QDs) with free‐self‐reabsorption losses and large Stokes shift (>190 nm) synthesized on an industrially gram‐scale as an alternative for Cd‐based energy‐downshift (EDS)‐QD layers. The QDs exhibit a typical EDS that absorbs only UV light (<407 nm) and emits the whole range of visible light (400–800 nm) with a high photoluminescence‐quantum yield of ≈76%. The straightforward application of these EDS‐QDs on the front surface of a monocrystalline p‐type silicon solar cell significantly enhances the short‐circuit current density by ≈1.64 mA cm?2 (+4.20%); thereby, improving the power‐conversion‐efficiency by ≈4.11%. The significant improvement in the external quantum efficiency increases by ≈35.7% and that in the surface reflectance decreases by ≈14.1% in the UV region (300–450 nm) clearly manifest the photovoltaic enhancement. Such promising results together with the simple (one‐pot core/shell synthesis), cost‐effective (reduction in a bill of material–system by ≈2.62%), and scalable (2000 mL three‐neck flask, 11 g of QDs) preparation process might encourage the manufacturers of solar cells and other optoelectronic applications to apply these EDS‐QDs to different broader eco‐friendly applications.  相似文献   

16.
This article reports on a novel fluorescence resonance energy transfer (FRET) system between harmine and silver nanoparticles (AgNPs), in which harmine acts as the donor and AgNPs act as the acceptor. As a result of FRET, harmine fluorescence is quenched efficiently with a corresponding Stern–Volmer constant of 3.61 × 1011 L/mol. It was found that upon addition of the anticancer drug, 6–thioguanine (6–TG), the fluorescence was recovered due to the competitive adsorption of this compound onto AgNPs. Based on this effect, a selective turn‐on fluorescence sensor was developed for the determination of 6–TG. Under optimum conditions, the enhanced fluorescence intensity displays a linear relationship with the concentration of 6–TG in the range 1.5 × 10‐8–7.5 × 10‐7 M with a detection limit of 9.7 nM. The developed method was applied to the determination of this drug in a pharmaceutical preparation and human plasma samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, d ‐penicillamine‐functionalized graphene quantum dots (DPA‐GQD) has been synthesized, which significantly increases the fluorescence intensity of GQD. We used this simple fluorescent probe for metal ions detection in human plasma samples. Designed DPA‐GQD respond to Hg2+, Cu2+, Au2+, Ag+, Co2+, Zn2+, and Pb2+ with high sensitivity. The fluorescence intensity of this probe decreased significantly in the presence of metal ions such as, Hg2+, Cu2+, Au2+, Ag+, Co2+, Zn2+, and Pb2+. In this work, a promising probe for ions monitoring was introduced. Moreover, DPA‐GQD probe has been tested in plasma samples. The functionalized DPA‐GQDs exhibits great promise as an alternative to previous fluorescent probes for bio‐labeling, sensing, and other biomedical applications in aqueous solution.  相似文献   

18.
This study was designed to compare the protein‐binding characteristics of aspirin–zinc complex (AZN) with those of aspirin itself. AZN was synthesized and interacted with a model transport protein, human serum albumin (HSA). Three‐dimensional fluorescence, ultraviolet–visible and circular dichroism (CD) spectra were used to characterize the interaction of AZN with HSA under physiological conditions. The interaction mechanism was explored using a fluorescence quenching method and thermodynamic calculation. The binding site and binding locality of AZN on HSA were demonstrated using a fluorescence probe technique and Förster non‐radiation energy transfer theory. Synchronous fluorescence and CD spectra were employed to reveal the effect of AZN on the native conformation of the protein. The HSA‐binding results for AZN were compared with those for aspirin under consistent experimental conditions, and indicated that aspirin acts as a guide in AZN when binding to Sudlow's site I, in subdomain IIA of the HSA molecule. Moreover, compared with aspirin, AZN showed greater observed binding constants with, but smaller changes in the α‐helicity of, HSA, which proved that AZN might be easier to transport and have less toxicity in vivo.  相似文献   

19.
Energy transfer engineering based on fluorescent probes for directly sensing enzyme activities are in great demand as enzyme‐mediated transformations, which are central to all biological processes. Here, a fluorescence carbon dot (CD)‐based assay exhibiting selective responses to the quantitation of β‐glucosidase and the effect of its inhibitor was developed. The most common substrate, para‐nitrophenyl‐β‐d ‐glucopyranoside (pNPG) was hydrolyzed by β‐glucosidase to release p‐nitrophenol (pNP), which can efficiently quench fluorescence of CDs via an inner filter effect and electron transfer. However, in the presence of inhibitors of β‐glucosidase, the fluorescence intensity gradually recovered as the concentration of inhibitors increased. Therefore, the enzyme‐triggered fluorescence turn‐off/turn‐on of specific CDs successfully achieved sensitive detection of β‐glucosidase and monitored the effect of its inhibitors. This new strategy was applied to detect β‐glucosidase and monitor β‐glucosidase inhibitor in hepatoma cells using cell imaging. All results suggest that the new method is sensitive and promising for use in cancer diagnosis and treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号