共查询到20条相似文献,搜索用时 15 毫秒
1.
Fang Zhao Yicong Yang Yi Li Hao Jiang Xinlin Xie Tingting Yu Xuechun Wang Qing Liu Hao Zhang Haibo Jia Sheng Liu Mei Zhen Dan Zhu Shangbang Gao Peng Fei 《Journal of biophotonics》2020,13(6)
A type of compact and cost‐effective light‐sheet imaging device, termed sub‐voxel‐resolving light‐sheet add‐on module (SLAM), is developed to cooperate with conventional 2D epifluorescence microscope, allowing high‐contrast, resolution‐improved 3D imaging of various biological samples at high throughput. Further details can be found in the article by Fang Zhao, Yicong Yang, Yi Li, et al. ( e201960243 ).
2.
Rong Chen Yuxuan Zhao Mengna Li Yarong Wang Luoying Zhang Peng Fei 《Journal of biophotonics》2020,13(8)
Various computational super‐resolution methods are available based on the analysis of fluorescence fluctuation behind acquired frames. However, dilemmas often exist in the balance of fluorophore characteristics, computation cost, and achievable resolution. Here we present an approach that uses a super‐resolution radial fluctuations (SRRF) image to guide the Bayesian analysis of fluorophore blinking and bleaching (3B) events, allowing greatly accelerated localization of overlapping fluorophores with high accuracy. This radial fluctuation Bayesian analysis (RFBA) approach is also extended to three dimensions for the first time and combined with light‐sheet fluorescence microscopy, to achieve super‐resolution volumetric imaging of thick samples densely labeled with common fluorophores. For example, a 700‐nm thin Bessel plane illumination is developed to optically section the Drosophila brain, providing a high‐contrast 3D image of rhythmic neurons. RFBA analyzes 30 serial volumes to reconstruct a super‐resolved 3D image at 4‐times higher resolutions (~70 and 170 nm), and precisely resolve the axon terminals. The computation is over 2‐orders faster than conventional 3B analysis microscopy. The capability of RFBA is also verified through dual‐color imaging of cell nucleus in live Drosophila brain. The spatial co‐localization patterns of the nuclear envelope and DNA in a neuron deep inside the brain can be precisely extracted by our approach. 相似文献
3.
Ziv Shemesh Gal Chaimovich Liron Gino Nisan Ozana Jonathan Nylk Kishan Dholakia Zeev Zalevsky 《Journal of biophotonics》2020,13(7)
Light‐sheet fluorescence microscopy (LSFM) is a powerful technique that can provide high‐resolution images of biological samples. Therefore, this technique offers significant improvement for three‐dimensional (3D) imaging of living cells. However, producing high‐resolution 3D images of a single cell or biological tissues, normally requires high acquisition rate of focal planes, which means a large amount of sample sections. Consequently, it consumes a vast amount of processing time and memory, especially when studying real‐time processes inside living cells. We describe an approach to minimize data acquisition by interpolation between planes using a phase retrieval algorithm. We demonstrate this approach on LSFM data sets and show reconstruction of intermediate sections of the sparse samples. Since this method diminishes the required amount of acquisition focal planes, it also reduces acquisition time of samples as well. Our suggested method has proven to reconstruct unacquired intermediate planes from diluted data sets up to 10× fold. The reconstructed planes were found correlated to the original preacquired samples (control group) with correlation coefficient of up to 90%. Given the findings, this procedure appears to be a powerful method for inquiring and analyzing biological samples. 相似文献
4.
Oblique scanning 2‐photon light‐sheet fluorescence microscopy for rapid volumetric imaging 下载免费PDF全文
Light‐sheet fluorescence microscopy (LSFM) is a powerful tool for biological studies because it allows for optical sectioning of dynamic samples with superior temporal resolution. However, LSFM using 2 orthogonally co‐aligned objectives requires a special sample geometry, and volumetric imaging speed is limited due to physical sample translation. This paper describes an oblique scanning 2‐photon LSFM (OS‐2P‐LSFM) that eliminates these limitations by using a single objective near the sample and a refractive scanning‐descanning system. This system also provides improved light‐sheet confinement against scattering by using a 2‐photon Bessel beam. The OS‐2P‐LSFM hold promise for studying structural, functional and dynamic aspects of living tissues and organisms because it allows for high‐speed, translation‐free and scattering‐robust 3D imaging of large biological specimens. 相似文献
5.
Hugh Sparks Liuba Dvinskikh Jahn M. Firth Alice J. Francis Sian E. Harding Carl Paterson Ken T. MacLeod Chris Dunsby 《Journal of biophotonics》2020,13(6)
We report a flexible light‐sheet fluorescence microscope (LSFM) designed for studying dynamic events in cardiac tissue at high speed in 3D and the correlation of these events to cell microstructure. The system employs two illumination‐detection modes: the first uses angle‐dithering of a Gaussian light sheet combined with remote refocusing of the detection plane for video‐rate volumetric imaging; the second combines digitally‐scanned light‐sheet illumination with an axially‐swept light‐sheet waist and stage‐scanned acquisition for improved axial resolution compared to the first mode. We present a characterisation of the spatial resolution of the system in both modes. The first illumination‐detection mode achieves dual spectral‐channel imaging at 25 volumes per second with 1024 × 200 × 50 voxel volumes and is demonstrated by time‐lapse imaging of calcium dynamics in a live cardiomyocyte. The second illumination‐detection mode is demonstrated through the acquisition of a higher spatial resolution structural map of the t‐tubule network in a fixed cardiomyocyte cell. 相似文献
6.
Hao Jia Xianghua Yu Yanlong Yang Xing Zhou Shaohui Yan Chao Liu Ming Lei Baoli Yao 《Journal of biophotonics》2019,12(1)
The side lobes of Bessel beam will create significant out‐of‐focus background when scanned in light‐sheet fluorescence microscopy (LSFM), limiting the axial resolution of the imaging system. Here, we propose to overcome this issue by scanning the sample twice with zeroth‐order Bessel beam and another type of propagation‐invariant beam, complementary to the zeroth‐order Bessel beam, which greatly reduces the out‐of‐focus background created in the first scan. The axial resolution can be improved from 1.68 μm of the Bessel light‐sheet to 1.07 μm by subtraction of the two scanned images across a whole field‐of‐view of up to 300 μm × 200 μm × 200 μm. The optimization procedure to create the complementary beam is described in detail and it is experimentally generated with a spatial light modulator. The imaging performance is validated experimentally with fluorescent beads as well as eGFP‐labeled mouse brain neurons. 相似文献
7.
Roberto Memeo Petra Paiè Federico Sala Michele Castriotta Chiara Guercio Thomas Vaccari Roberto Osellame Andrea Bassi Francesca Bragheri 《Journal of biophotonics》2021,14(3):e202000396
We present a microscope on chip for automated imaging of Drosophila embryos by light sheet fluorescence microscopy. This integrated device, constituted by both optical and microfluidic components, allows the automatic acquisition of a 3D stack of images for specimens diluted in a liquid suspension. The device has been fully optimized to address the challenges related to the specimens under investigation. Indeed, the thickness and the high ellipticity of Drosophila embryos can degrade the image quality. In this regard, optical and fluidic optimization has been carried out to implement dual-sided illumination and automatic sample orientation. In addition, we highlight the dual color investigation capabilities of this device, by processing two sample populations encoding different fluorescent proteins. This work was made possible by the versatility of the used fabrication technique, femtosecond laser micromachining, which allows straightforward fabrication of both optical and fluidic components in glass substrates. 相似文献
8.
Single organelle dynamics linked to 3D structure by correlative live‐cell imaging and 3D electron microscopy 下载免费PDF全文
Job Fermie Nalan Liv Corlinda ten Brink Elly G. van Donselaar Wally H. Müller Nicole L. Schieber Yannick Schwab Hans C. Gerritsen Judith Klumperman 《Traffic (Copenhagen, Denmark)》2018,19(5):354-369
Live‐cell correlative light‐electron microscopy (live‐cell‐CLEM) integrates live movies with the corresponding electron microscopy (EM) image, but a major challenge is to relate the dynamic characteristics of single organelles to their 3‐dimensional (3D) ultrastructure. Here, we introduce focused ion beam scanning electron microscopy (FIB‐SEM) in a modular live‐cell‐CLEM pipeline for a single organelle CLEM. We transfected cells with lysosomal‐associated membrane protein 1‐green fluorescent protein (LAMP‐1‐GFP), analyzed the dynamics of individual GFP‐positive spots, and correlated these to their corresponding fine‐architecture and immediate cellular environment. By FIB‐SEM we quantitatively assessed morphological characteristics, like number of intraluminal vesicles and contact sites with endoplasmic reticulum and mitochondria. Hence, we present a novel way to integrate multiple parameters of subcellular dynamics and architecture onto a single organelle, which is relevant to address biological questions related to membrane trafficking, organelle biogenesis and positioning. Furthermore, by using CLEM to select regions of interest, our method allows for targeted FIB‐SEM, which significantly reduces time required for image acquisition and data processing. 相似文献
9.
High speed sCMOS‐based oblique plane microscopy applied to the study of calcium dynamics in cardiac myocytes 下载免费PDF全文
Vincent Maioli Christina Rowlands Fabiana Gordon Sian E. Harding Alexander R. Lyon Chris Dunsby 《Journal of biophotonics》2016,9(3):311-323
Oblique plane microscopy (OPM) is a form of light sheet microscopy that uses a single high numerical aperture microscope objective for both fluorescence excitation and collection. In this paper, measurements of the relative collection efficiency of OPM are presented. An OPM system incorporating two sCMOS cameras is then introduced that enables single isolated cardiac myocytes to be studied continuously for 22 seconds in two dimensions at 667 frames per second with 960 × 200 pixels and for 30 seconds with 960 × 200 × 20 voxels at 25 volumes per second. In both cases OPM is able to record in two spectral channels, enabling intracellular calcium to be studied via the probe Fluo‐4 AM simultaneously with the sarcolemma and transverse tubule network via the membrane dye Cellmask Orange. The OPM system was then applied to determine the spatial origin of spontaneous calcium waves for the first time and to measure the cell transverse tubule structure at their point of origin. Further results are presented to demonstrate that the OPM system can also be used to study calcium spark parameters depending on their relationship to the transverse tubule structure.
10.
Moein Mozaffarzadeh Mehdi H. H. Varnosfaderani Arunima Sharma Manojit Pramanik Nico de Jong Martin D. Verweij 《Journal of biophotonics》2019,12(11)
In acoustic‐resolution photoacoustic microscopy (AR‐PAM) systems, the lateral resolution in the focal zone of the ultrasound (US) transducer is determined by the numerical aperture (NA) of the transducer. To have a high lateral resolution, a large NA is used. However, the larger the NA, the smaller the depth of focus [DOF]. As a result, the lateral resolution is deteriorated at depths out of the focal region. The synthetic aperture focusing technique (SAFT) along with a beamformer can be used to improve the resolution outside the focal region. In this work, for image formation in AR‐PAM, we propose the double‐stage delay‐multiply‐and‐sum (DS_DMAS) algorithm to be combined with SAFT. The proposed method is evaluated experimentally using hair targets and in vivo vasculature imaging. It is shown that DS_DMAS provides a higher resolution and contrast compared to other methods. For the B‐mode images obtained using the hair phantom, the proposed method reduces the average noise level for all the depths by about 134%, 57% and 23%, compared to the original low‐ resolution, SAFT+DAS and SAFT+DMAS methods, respectively. All the results indicate that the proposed method can be an appropriate algorithm for image formation in AR‐PAM systems. 相似文献
11.
D. Cretoiu E. Hummel H. Zimmermann M. Gherghiceanu L. M. Popescu 《Journal of cellular and molecular medicine》2014,18(11):2157-2164
Telocyte (TC) is a newly identified type of cell in the cardiac interstitium ( www.telocytes.com ). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs' three‐dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB‐SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB‐SEM tomography confirms that they have long, narrow but flattened (ribbon‐like) telopodes, with humps generated by the podoms. FIB‐SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB‐SEM tomography of a human cell type. 相似文献
12.
Eline van Meel Erik Bos Martijn J. C. van der Lienden Herman S. Overkleeft Sander I. van Kasteren Abraham J. Koster Johannes M. F. G. Aerts 《Traffic (Copenhagen, Denmark)》2019,20(5):346-356
β‐Glucocerebrosidase (GBA) is the enzyme that degrades glucosylceramide in lysosomes. Defects in GBA that result in overall loss of enzymatic activity give rise to the lysosomal storage disorder Gaucher disease, which is characterized by the accumulation of glucosylceramide in tissue macrophages. Gaucher disease is currently treated by infusion of mannose receptor‐targeted recombinant GBA. The recombinant GBA is thought to reach the lysosomes of macrophages, based on the impressive clinical response that is observed in Gaucher patients (type 1) receiving this enzyme replacement therapy. In this study, we used cyclophellitol‐derived activity‐based probes (ABPs) with a fluorescent reporter that irreversibly bind to the catalytic pocket of GBA, to visualize the active enzymes in a correlative microscopy approach. The uptake of pre‐labeled recombinant enzyme was monitored by fluorescence and electron microscopy in human fibroblasts that stably expressed the mannose receptor. The endogenous active enzyme was simultaneously visualized by in situ labeling with the ABP containing an orthogonal fluorophore. This method revealed the efficient delivery of recombinant GBA to lysosomal target compartments that contained endogenous active enzyme. 相似文献
13.
Phytotyping4D: a light‐field imaging system for non‐invasive and accurate monitoring of spatio‐temporal plant growth 下载免费PDF全文
Federico Apelt David Breuer Zoran Nikoloski Mark Stitt Friedrich Kragler 《The Plant journal : for cell and molecular biology》2015,82(4):693-706
Integrative studies of plant growth require spatially and temporally resolved information from high‐throughput imaging systems. However, analysis and interpretation of conventional two‐dimensional images is complicated by the three‐dimensional nature of shoot architecture and by changes in leaf position over time, termed hyponasty. To solve this problem, Phytotyping4D uses a light‐field camera that simultaneously provides a focus image and a depth image, which contains distance information about the object surface. Our automated pipeline segments the focus images, integrates depth information to reconstruct the three‐dimensional architecture, and analyses time series to provide information about the relative expansion rate, the timing of leaf appearance, hyponastic movement, and shape for individual leaves and the whole rosette. Phytotyping4D was calibrated and validated using discs of known sizes, and plants tilted at various orientations. Information from this analysis was integrated into the pipeline to allow error assessment during routine operation. To illustrate the utility of Phytotyping4D, we compare diurnal changes in Arabidopsis thaliana wild‐type Col‐0 and the starchless pgm mutant. Compared to Col‐0, pgm showed very low relative expansion rate in the second half of the night, a transiently increased relative expansion rate at the onset of light period, and smaller hyponastic movement including delayed movement after dusk, both at the level of the rosette and individual leaves. Our study introduces light‐field camera systems as a tool to accurately measure morphological and growth‐related features in plants. 相似文献
14.
15.
Creating homogenous strain distribution within 3D cell‐encapsulated constructs using a simple and cost‐effective uniaxial tensile bioreactor: Design and validation study 下载免费PDF全文
Gayathri Subramanian Mostafa Elsaadany Callan Bialorucki Eda Yildirim‐Ayan 《Biotechnology and bioengineering》2017,114(8):1878-1887
16.
Combining high‐pressure freezing with pre‐embedding immunogold electron microscopy and tomography 下载免费PDF全文
Michael W. Hess Georg F. Vogel Teodor E. Yordanov Barbara Witting Karin Gutleben Hannes L. Ebner Mariana E. G. de Araujo Przemyslaw A. Filipek Lukas A. Huber 《Traffic (Copenhagen, Denmark)》2018,19(8):639-649
Immunogold labeling of permeabilized whole‐mount cells or thin‐sectioned material is widely used for the subcellular localization of biomolecules at the high spatial resolution of electron microscopy (EM). Those approaches are well compatible with either 3‐dimensional (3D) reconstruction of organelle morphology and antigen distribution or with rapid cryofixation—but not easily with both at once. We describe here a specimen preparation and labeling protocol for animal cell cultures, which represents a novel blend of specifically adapted versions of established techniques. It combines the virtues of reliably preserved organelle ultrastructure, as trapped by rapid freezing within milliseconds followed by freeze‐substitution and specimen rehydration, with the advantages of robust labeling of intracellular constituents in 3D through means of pre‐embedding NANOGOLD‐silver immunocytochemistry. So obtained thin and semi‐thick epoxy resin sections are suitable for transmission EM imaging, as well as tomographic reconstruction and modeling of labeling patterns in the 3D cellular context. 相似文献
17.
Bougourd S Marrison J Haseloff J 《The Plant journal : for cell and molecular biology》2000,24(4):543-550
A new method is described for fluorescent imaging of mature Arabidopsis embryos that enables their cellular architecture to be visualized without the need for histological sectioning. Mature embryos are stained with aniline blue and cleared with chloral hydrate to allow high-resolution confocal imaging of individual cells within the embryo prior to germination. The technique allows the collection of longitudinal optical sections throughout the cotyledon, hypocotyl and root of wild-type Arabidopsis C24 embryos. Every cell within the mature embryo can be visualized with sufficient clarity and resolution to allow three-dimensional analysis of cellular architecture. Optical sectioning of mutant gnom, short-root and scarecrow embryos, and through root meristems disrupted as a consequence of targeted misexpression of diphtheria toxin, demonstrate the potential of this technique for visualizing the cellular organization of mutant and perturbed embryonic phenotypes. 相似文献
18.
Yongzhu Chen Chengkang Tang Zhihua Xing Jie Zhang Feng Qiu 《Journal of peptide science》2013,19(11):708-716
Self‐assembly of natural or designed peptides into fibrillar structures based on β‐sheet conformation is a ubiquitous and important phenomenon. Recently, organic solvents have been reported to play inductive roles in the process of conformational change and fibrillization of some proteins and peptides. In this study, we report the change of secondary structure and self‐assembling behavior of the surfactant‐like peptide A6K at different ethanol concentrations in water. Circular dichroism indicated that ethanol could induce a gradual conformational change of A6K from unordered secondary structure to β‐sheet depending upon the ethanol concentration. Dynamic light scattering and atomic force microscopy revealed that with an increase of ethanol concentration the nanostructure formed by A6K was transformed from nanosphere/string‐of‐beads to long and smooth fibrils. Furthermore, Congo red staining/binding and thioflavin‐T binding experiments showed that with increased ethanol concentration, the fibrils formed by A6K exhibited stronger amyloid fibril features. These results reveal the ability of ethanol to promote β‐sheet conformation and fibrillization of the surfactant‐like peptide, a fact that may be useful for both designing self‐assembling peptide nanomaterials and clarifying the molecular mechanism behind the formation of amyloid fibrils. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
19.
Kang Wang Zhizai Li Faguang Zhou Haoran Wang Hui Bian Hong Zhang Qian Wang Zhiwen Jin Liming Ding Shengzhong Liu 《Liver Transplantation》2019,9(42)
The highest certified power conversion efficiency (PCE) of black phase based CsPbI3 perovskite solar cells has exceeded 18%, and become a hotspot in recent progress. However, the black phase of CsPbI3 rapidly transforms to yellow phase in ambient conditions due to its thermodynamic instability. Here, a Ruddlesden–Popper 2D structure is introduced into γ‐CsPbI3 film to stabilize the black phase via reducing dimensionality. It is found that a judicious amount of phenylethylammonium iodide can adjust the dimensionality of γ‐CsPbI3 film from 2D to quasi‐2D and 3D phase. Comprehensive consideration to obtain both the stability and high PCE, quasi‐2D (n = 40) γ‐CsPbI3 delivers a reproducible PCE of 13.65% with negligible hysteresis. By utilizing femtosecond transient absorption and time‐resolved PL decay, similar carrier kinetics in n = 40 and ∞ samples are observed, meaning an efficient charge extraction. More importantly, when the device is placed at 80 °C in N2 condition or in air with RH of 25–30%, its PCE keeps ≈88% and ≈89% of its initial PCE after 12 days, respectively. Such results are better than the 3D one (≈69% and ≈16%, respectively). 相似文献