首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple Schiff‐base colorimetric receptor 1 was prepared. It exhibits an ‘off–on‐type’ mode with high sensitivity in the presence of Hg2+. The change in color is very easily observed by the naked eye in the presence of Hg2+, whereas other metal cations do not induce such a change. A Job plot indicated a 1 : 1 complexation stoichiometry between receptor 1 and Hg2+. The association constant for 1–Hg2+ in Tetrahydrofuran (THF) was determined to be 1.3 × 109 M‐1 using a Hill plot. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A novel fluorescent sensor, 1‐((2‐hydroxynaphthalen‐1‐yl)methylene)urea (ocn) has been designed and applied as a highly selective and sensitive fluorescent probe for recognition of Al3+ in Tris–HCl (pH = 7.20) solution. The probe ocn exhibits an excellent selectivity to Al3+ over other examined metal ions, anions and amino acids with a prominent fluorescence ‘turn‐on’ at 438 nm. ocn binds to Al3+ with a 2:1 binding stoichiometry and the detection limit was 0.3 μM. Furthermore, its capability of biological application was evaluated and the results showed that the sensor could be used to detect Al3+ in living cells.  相似文献   

3.
Tuning of ligand structures through controlled variation of ring number in fused‐ring aromatic moiety appended to antipyrine allows detection of 7.8 × 10?12 M pyrene via aggregation‐induced emission (AIE) associated with 101‐fold fluorescence enhancement. In one case, antipyrine unit is replaced by pyridine to derive bis‐methylanthracenyl picolyl amine. The structures of four molecules have been confirmed by single crystal X‐ray diffraction analysis. Among them, pyrene‐antipyrine conjugate (L) undergoes pyrene triggered inhibition of photo‐induced electron transfer (PET) leading to water‐assisted AIE.  相似文献   

4.
Mercury (Hg) is a heavy metal with high toxicity and easy migration; it can be enriched through the food chain, and cause serious threats to the natural environment and human health. So, the development of a method that can be used to detect mercury ions (Hg2+) in the environment, in cells, and in organisms is very important. Here, a new 7‐hydroxycoumarin‐derived carbonothioate‐based probe ( CC‐Hg ) was designed and synthesized for detection of Hg2+. After addition of Hg2+, a large fluorescence enhancement was observed due to the formation of 7‐hydroxyl, which reinforced the intramolecular charge transfer process. The CC‐Hg probe had good water solubility and selectivity. Moreover, the probe was able to detect Hg2+ quantitatively over the concentration range 0–2 μM and with a detection limit of 7.9 nM. Importantly, we successfully applied the probe to detect Hg2+ in water samples, in living cells, and in zebrafish. The experimental results demonstrated its potential value in practical applications.  相似文献   

5.
A new fluorescent Al3+‐probe, N‐allyl‐4‐[3,3′‐((2‐aminoethyl)azanediyl)‐bis(N´‐(2‐hydroxybenzylidene)propanehy‐drazide)]‐1,8‐naphthalimide ( L ), was designed and synthesized based on 1,8‐naphthalimide. The probe L contains 1,8‐naphthalimide moiety as the fluorophore and a Schiff base as the recognition group. The structure of L was determined by single crystal X‐ray. L emission at 526 nm increased on addition of Al3+ under excitation wavelength at 350 nm. L exhibited high selectivity and sensitivity fluorescence emission towards to Al3+ in ethanol/Tris–HCl buffer solution (1:1, v/v, pH = 7.2) as compared with other tested metal ions. A good linearity with a correlation coefficient (R2) of 0.99 was observed in the concentration range 2–10 μM. The binding constant and the detection limit of L for Al3+ were calculated to 2.6 × 104 M?1 and 0.34 μM, respectively. The results of experiments that including Job plot, ultraviolet–visible (UV–Vis) light titration, fluorescence titration, ESI‐MS and 1H NMR titration, indicated a 1:1 stoichiometric complex between L and Al3+. L was highly effective in monitoring Al3+ in real‐life Yellow River and tap water samples.  相似文献   

6.
A Schiff base compound derived from naphthalene has been synthesized and characterized as an Al3+‐selective fluorescent probe. The chemosensor ( L ) exhibits high selectively for Al3+ in aqueous solution, even in the presence of biologically relevant cations such as Na+, K+, Ca2+, Mg2+, Pb2+ and several transition metal ions. There was no observed interference from anions like Br?, Cl?, HSO3?, SO32?, S2O32?, NO2?, CO32? and AC?. The lowest detection limit for the chemosensor L was found to be 1.89 × 10?8 M with a linear response towards Al3+ over a concentration range of 5 × 10?6 to 4 × 10?5 M. Furthermore, the proposed chemosensor has been used for imaging of Al3+ in two different types of cells with satisfying results, which further demonstrates its value for practical application in biological systems.  相似文献   

7.
Exposure to even very low concentrations of Pb2+ is known to cause cardiovascular, neurological, developmental, and reproductive disorders, and affects children in particular more severely. Consequently, much effort has been dedicated to the development of colorimetric and fluorescent sensors that can selectively detect Pb2+ ions. Here, we describe the development of a triazole‐based fluorescent sensor L5 for Pb2+ ion detection. The fluorescence intensity of chemosensor L5 was selectively quenched by Pb2+ ions and a clear color change from colorless to yellow could be observed by the naked eye. Chemosensor L5 exhibited high sensitivity and selectivity towards Pb2+ ions in phosphate‐buffered solution [20 mM, 1:9 DMSO/H2O (v/v), pH 8.0] with a 1:1 binding stoichiometry, a detection limit of 1.9 nM and a 6.76 × 106 M?1 binding constant. Additionally, low‐cost and easy‐to‐prepare test strips impregnated with chemosensor L5 were also produced for efficient of Pb2+ detection and proved the practical use of this test.  相似文献   

8.
A novel fluorescent probe (CA‐N) was designed and synthesized for detection of biothiols. CA‐N displayed a strong fluorescence in the presence of biothiols with high sensitivity, and the mechanism for detection biothiols was based on the Michael addition reaction of a thiol group to α,β‐unsaturated ketones. CA‐N showed low detection limit for cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), which were calculated as 3.16, 0.19 and 5.15 μM, respectively. At the same time, CA‐N exhibited high selectivity toward biothiols compared with other biological amino acids. In vitro cell experiments proved that CA‐N had no cytotoxicity, high cell permeability and could be employed in living cell imaging for biothiols. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Two new rhodamine‐based fluorescent probes were synthesized and characterized by NMR, high resolution mass spectrometer (HR‐MS) and IR. The probes displayed a high selectivity for Fe3+ among environmentally and biologically relevant metal ions in aqueous solution (CH3OH–H2O = 3 : 2, v/v). The significant changes in the fluorescence color could be used for naked‐eye detection. Job's plot, IR and 1H NMR indicated the formation of 1: 1 complexes between sensor 1 and Fe3+. The reversibility establishes the potential of both probes as chemosensors for Fe3+ detection. The probe showed highly selectivity in aqueous solution and could be used over the pH range between 5 and 9. A simple paper test‐strip system for the rapid monitoring of Fe3+ was developed, indicating its convenient use in environmental samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A new 4-amino-1,8-naphthalimide-based fluorescent sensor, with iminoacetic acid and iminoethoxyacetic acid as receptor, was developed. It was applied successfully to detect Zn2+ in aqueous solution and living cells. Under physiological pH conditions, it demonstrates high selectivity and sensitivity for sensing Zn2+ with about 7-fold enhancement in aqueous solution, with a characteristic emission band of 4-amino-1,8-naphthalimide with a green color centered at 550 nm.  相似文献   

11.
The development of an analytical probe to monitor highly mutagenic picric acid (PA) carries enormous significance for the environment and for health. A novel, simple and rapid fluorescence analytical assay using sulfur‐doped graphene quantum dots (SGQDs) was designed for the highly sensitive and selective detection of PA. SGQDs were synthesized via simple pyrolysis of 3‐mercaptopropionic acid and citric acid and characterized using advanced analytical techniques. Fluorescence intensity (FI) of SGQDs was markedly quenched by addition of PA, attributed to the inner filter effect and dominating static quenching mechanism between the two, in addition to a significant colour change. The calibration curve of the proposed assay exhibited a favourable linearity between quenched FI and PA concentration over the 0.1–100 μΜ range with a lowest detection limit of 0.093 μΜ and a correlation coefficient of 0.9967. The analytical assay was investigated for detection of trace amounts of PA in pond and rain water samples and showed great potential for practical applications with both acceptable recovery (98.0–100.8%) and relative standard deviation (1.24–4.67%). Analytical performance of the assay in terms of its detection limit, linearity range, and recovery exhibited reasonable superiority over previously reported methods, thereby holding enormous promise as a simple, sensitive, and selective method for detection of PA.  相似文献   

12.
Yongfu Teng 《Luminescence》2021,36(1):256-260
A near‐ultraviolet (NUV) blue‐emitting phosphor Ba9Al2Si6O24:Ce3+ (BAS:Ce3+) was synthesized using a high‐temperature solid‐state reaction. BAS:Ce3+ had an excitation band peak at about 328 nm and showed a blue emission band. The NUV‐blue emission band had a peak at about 386 nm with a band width of about 60 nm, attributed to the 5d–4f transition of Ce3+. Fluorescent decay showed an exponential model with a lifetime of 27.2 nsec. At 150°C, the luminescence intensity decreased to 68.7% compared with the intensity at room temperature.  相似文献   

13.
1,4‐Dithiothreitol (DTT) has wide applications in cell biology and biochemistry. Development of effective methods for monitoring DTT in biological systems is important for the safe handling and study of toxicity to humans. Herein, we describe a two‐photon fluorescence probe (Rh‐DTT) to detect DTT in living systems for the first time. Rh‐DTT showed high selectivity and sensitivity to DTT. Rh‐DTT can be successfully used for the two‐photon imaging of DTT in living cells, and also can detect DTT in living tissues and mice.  相似文献   

14.
Currently, the fluorescent probe is an important method for detecting heavy metal ions, especially mercury ion (Hg2+), which is harmful to the health of humans and the environment due to its toxicity and extensive use. In this paper, we designed and synthesized a colorimetric and long‐wavelength fluorescent probe Hg‐P with high sensitivity and excellent selectivity, which could detect Hg2+ by the changes of visual color, fluorescence and absorption spectroscopy. With the addition of Hg2+ to probe Hg‐P solution, its color changed from yellow to pink, and showed a 171 nm red‐shifted absorption spectrum. Probe Hg‐P was used in real water and soil solution samples to detect Hg2+, and the result is satisfactory. Therefore, this new probe shows great value and application in detecting Hg2+ in the environment.  相似文献   

15.
BaO‐B2O3‐P2O5 glasses doped with a fixed concentration of Tb3+ ions and varying concentrations of Al2O3 were synthesized, and the influence of the Al3+ ion concentration on the luminescence efficiency of the green emission of Tb3+ ions was investigated. The optical absorption, excitation, luminescence spectra and fluorescence decay curves of these glasses were recorded at ambient temperature. The emission spectra of terbium ions when excited at 393 nm exhibited two main groups of bands, corresponding to 5D3 → 7Fj (blue region) and 5D4 → 7Fj (green region). From these spectra, the radiative parameters, viz., spontaneous emission probability A, total emission probability AT, radiative lifetime τ and fluorescent branching ratio β, of different transitions originating from the 5D4 level of Tb3+ ions were evaluated based on the Judd‐Ofelt theory. A clear increase in the quantum efficiency and luminescence of the green emission of Tb3+ ions corresponding to 5D4 → 7F5 transition is observed with increases in the concentration of Al2O3 up to 3.0 mol%. The improvement in emission is attributed to the de‐clustering of terbium ions by Al3+ ions and also to the possible admixing of wave functions of opposite parities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, an innovative and facile one‐pot method for synthesizing water‐soluble and stable fluorescent Cu nanoclusters (CuNCs), in which glutathione (GSH) served as protecting ligand and ascorbic acid (AA) as reducing agent was reported. The resultant CuNCs emitted blue‐green fluorescence at 440 nm, with a quantum yield (QD) of about 3.08%. In addition, the prepared CuNCs exhibited excellent properties such as good water solubility, photostability and high stability toward high ionic strength. On the basis of the selective quenching of Hg2+ on CuNCs fluorescence, which may be the result of Hg2+ ion‐induced aggregation of the CuNCs, the CuNCs was used for the selective and sensitive determination of Hg2+ in aqueous solution. The proposed analytical strategy permitted detection of Hg2+ in a linear range of 4 × 10?8 to 6 × 10?5 M, with a detection limit of 2.2 × 10?8 M. Eventually, the practicability of this sensing approach was confirmed by its successful application to assay Hg2+ in tap water, Lotus lake water and river water samples with the quantitative spike recoveries ranging from 96.9% to 105.4%.  相似文献   

17.
A novel and simple fluorescence enhancement method is introduced for selective pyrophosphate (PPi) sensing in an aqueous solution. The method is based on a 1:1 metal complex formation between tris(8‐hydroxyquinoline‐5‐sulphonate) thulium(III) [Tm(QS)3] and PPi ion. The linear response covers a concentration range of 1.6 × 10?7–1.0 × 10?5 mol/L PPi and the detection limit is 2.3 × 10?8 mol/L. The association constant of Tm(QS)3–PPi complex was calculated as 2.6 × 105 mol/L. Tm(QS)3 shows a selective and sensitive fluorescence enhancement toward PPi ion in comparion with I3?, NO3?, CN?, CO32?, Br?, Cl?, F?, H2PO4? and SO42?, which is attributed to higher stability of the inorganic complex between pyrophosphate ion and Tm(QS)3. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Design, synthesis, characterization, and ion detection studies of two ferrocene-appended Schiff bases namely N-(2-[ferrocenylamino]ethyl)-5-nitropyridin-2-amine ( 1 ) and ferrocenylamino-1H-imidazole-4-carboxamide ( 2 ) been reported. Both the chemosensors have been thoroughly characterized using Fourier transfer infrared, 1H and 13C nuclear magnetic resonance, high resolution mass spectrometry, and ultraviolet/visible (UV/visible) and fluorescence spectral techniques. Probes 1 and 2 were designed with the aim of appending the ferrocenyl group with pyridine ring having an amine substitution (for 1 ) and imidazole ring with an amide substitution (for 2 ). Interaction of these probes with a series of cations and anions was examined through UV/vis and fluorescence spectral techniques. Probe 2 exhibited an insignificant response towards anions and loss of selectivity for cations, whereas 1 displayed highly selective detection towards biologically important Fe3+ in 2:1 (probe:cation) stoichiometry. Notably, none of the cations and anions could interfere the selectivity of Fe3+ ensured by 1 in aqueous medium. The limit of detection for Fe3+ detection using 1 was determined to be 0.2 ppm. The results strongly suggest that 1 could find promising future application as a chemosensor for Fe3+ in biological systems for quantification and qualitative analysis.  相似文献   

19.
We have established a real‐time and label‐free fluorescence turn‐on strategy for protease activity detection and inhibitor screening via peptide‐induced aggregation‐caused quenching of a perylene probe. Because of electrostatic interactions and high hydrophilicity, poly‐l ‐glutamic acid sodium salt (PGA; a negatively charged peptide) could induce aggregation of a positively charged perylene probe (probe 1) and the monomer fluorescence of probe 1 was effectively quenched. After a protease was added, PGA was enzymatically hydrolyzed into small fragments and probe 1 disaggregated. The fluorescence recovery of probe 1 was found to be proportional to the concentration of protease in the range from 0 to 1 mU/ml. The detection limit was down to 0.1 mU/ml. In the presence of a protease inhibitor, protease activity was inhibited and fluorescence recovery reduced. Moreover, we demonstrated the potential application of our method in a complex mixture sample including 1% human serum. Our method is simple, fast and cost effective.  相似文献   

20.
Mercury (Hg) is one of the heavy metal pollutants in the environment. Even a very small amount of mercury can cause serious harm to human beings. Herein, we reported a new carbonothioate‐based fluorescent probe for the detection of Hg2+ without interference from other metal ions. This probe possessed a very large Stokes shift (192 nm), which could improve the detection sensitivity by minimizing the interferences resulted from self‐absorption or auto‐fluorescence. With the addition of Hg2+ to the probe solution, considerable fluorescence enhancement was observed. Additionally, the Hg2+ concentration of 0–16 μM and fluorescence intensity showed a good linear relationship (y = 22106× + 53108, R2 = 0.9955). Finally, the proposed probe was used to detect Hg2+ in real water samples, and its result was satisfactory. Therefore, our proposed probe would provide a promising method for the determination of Hg2+ in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号