共查询到20条相似文献,搜索用时 0 毫秒
1.
单克隆抗体凭借其特异性强、副作用较小的优点,越来越广泛地应用于疾病的诊断与治疗。单克隆抗体药物在血液系统恶性肿瘤的治疗中也发挥了重要作用。目前,经美国食品与药品管理局(FDA)批准用于治疗血液系统恶性肿瘤的单克隆抗体药物已有六种,在临床取得良好的治疗效果。单克隆抗体药物主要通过对肿瘤细胞的直接杀伤作用、抗体依赖性细胞介导的细胞毒性反应(ADCC)、补体依赖性细胞毒性反应(CDC)和改变信号通路等机制达到治疗肿瘤的效果。另外,将单克隆抗体与放射性核素、化疗药物和毒素等偶联,用于肿瘤等疾病的靶向治疗研究,成为生物治疗领域的热点。该文对近年来国际上用于血液系统恶性肿瘤治疗的单克隆抗体药物进行了概括和总结,讨论了治疗性单克隆抗体药物存在的问题和应用前景。 相似文献
2.
Fabian Steinebach Nicole Ulmer Moritz Wolf Lara Decker Veronika Schneider Ruben Wälchli Daniel Karst Jonathan Souquet Massimo Morbidelli 《Biotechnology progress》2017,33(5):1303-1313
The realization of an end‐to‐end integrated continuous lab‐scale process for monoclonal antibody manufacturing is described. For this, a continuous cultivation with filter‐based cell‐retention, a continuous two column capture process, a virus inactivation step, a semi‐continuous polishing step (twin‐column MCSGP), and a batch‐wise flow‐through polishing step were integrated and operated together. In each unit, the implementation of internal recycle loops allows to improve the performance: (a) in the bioreactor, to simultaneously increase the cell density and volumetric productivity, (b) in the capture process, to achieve improved capacity utilization at high productivity and yield, and (c) in the MCSGP process, to overcome the purity‐yield trade‐off of classical batch‐wise bind‐elute polishing steps. Furthermore, the design principles, which allow the direct connection of these steps, some at steady state and some at cyclic steady state, as well as straight‐through processing, are discussed. The setup was operated for the continuous production of a commercial monoclonal antibody, resulting in stable operation and uniform product quality over the 17 cycles of the end‐to‐end integration. The steady‐state operation was fully characterized by analyzing at the outlet of each unit at steady state the product titer as well as the process (HCP, DNA, leached Protein A) and product (aggregates, fragments) related impurities. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1303–1313, 2017 相似文献
3.
Hadi Nasiri Zahra Valedkarimi Leili Aghebati‐Maleki Jafar Majidi 《Journal of cellular physiology》2018,233(9):6441-6457
4.
《MABS-AUSTIN》2013,5(4):1038-1050
The epithelial cell adhesion molecule (EpCAM) is expressed by a wide range of human carcinomas, making it an attractive diagnostic and therapeutic target in oncology. Its recent identification on cancer stem cells has raised further interest in its use for tumor targeting and therapy. Here, we present the characterization and therapeutic potential of 3–17I, a novel human EpCAM-targeting monoclonal antibody. Strong reaction of 3–17I was observed in all lung, colon, and breast human tumor biopsies evaluated. By flow cytometry and confocal fluorescence microscopy, we demonstrate that 3–17I specifically targets EpCAM-positive cell lines. We also show evidence for mAb-sequestration in endo-/lysosomes, suggesting internalization of 3–17I by receptor-mediated endocytosis. The ribosomal-inactivating toxin saporin was linked to 3–17I, creating the per se non-toxic immunotoxin 3–17I-saporin, a promising candidate for the drug delivery technology photochemical internalization (PCI). PCI is based on a light-controlled destruction of endolysosomal membranes and subsequent cytosolic release of the sequestered payload upon light exposure. EpCAM-positive human cancer cell lines MCF7 (breast), BxPC-3 (pancreas), WiDr (colon), and the EpCAM-negative COLO320DM (colon), were treated with 3–17I-saporin in combination with the clinically relevant photosensitizer TPCS2a (Amphinex), followed by exposure to light. No cytotoxicity was observed after treatment with 3–17I-saporin without light exposure. However, cell viability, proliferation and colony-forming capacity was strongly reduced in a light-dependent manner after PCI of 3–17I. Our results show that 3–17I is an excellent candidate for diagnosis of EpCAM-positive tumors and for development of clinically relevant antibody-drug conjugates, using PCI for the treatment of localized tumors. 相似文献
5.
Kaja Lund Monica Bostad Ellen Skarpen Michael Braunagel Sergej Kiprijanov Stefan Krauss Alex Duncan Anders H?gset P?l K. Selbo 《MABS-AUSTIN》2014,6(4):1038-1050
The epithelial cell adhesion molecule (EpCAM) is expressed by a wide range of human carcinomas, making it an attractive diagnostic and therapeutic target in oncology. Its recent identification on cancer stem cells has raised further interest in its use for tumor targeting and therapy. Here, we present the characterization and therapeutic potential of 3–17I, a novel human EpCAM-targeting monoclonal antibody. Strong reaction of 3–17I was observed in all lung, colon, and breast human tumor biopsies evaluated. By flow cytometry and confocal fluorescence microscopy, we demonstrate that 3–17I specifically targets EpCAM-positive cell lines. We also show evidence for mAb-sequestration in endo-/lysosomes, suggesting internalization of 3–17I by receptor-mediated endocytosis. The ribosomal-inactivating toxin saporin was linked to 3–17I, creating the per se non-toxic immunotoxin 3–17I-saporin, a promising candidate for the drug delivery technology photochemical internalization (PCI). PCI is based on a light-controlled destruction of endolysosomal membranes and subsequent cytosolic release of the sequestered payload upon light exposure. EpCAM-positive human cancer cell lines MCF7 (breast), BxPC-3 (pancreas), WiDr (colon), and the EpCAM-negative COLO320DM (colon), were treated with 3–17I-saporin in combination with the clinically relevant photosensitizer TPCS2a (Amphinex), followed by exposure to light. No cytotoxicity was observed after treatment with 3–17I-saporin without light exposure. However, cell viability, proliferation and colony-forming capacity was strongly reduced in a light-dependent manner after PCI of 3–17I. Our results show that 3–17I is an excellent candidate for diagnosis of EpCAM-positive tumors and for development of clinically relevant antibody-drug conjugates, using PCI for the treatment of localized tumors. 相似文献
6.
外泌体是直径为 30~100 nm 的内吞衍生囊泡,由多种活细胞分泌,含有大量的与其来源和功能密切相关的蛋白质、脂质和 RNA分子,可以在细胞间传递。已有研究表明癌症患者血液中的外泌体浓度比正常人高,且其中包含癌症标志分子,因此其有潜力成为疾病诊断的生物标志物。此外,作为一种天然的物质运输载体,外泌体已经被作为一种新型的药物递送系统,用于肿瘤及阿尔茨海默病等疾病的治疗。对外泌体作为疾病诊断标记物以及药物递送载体的研究进展进行综述。 相似文献
7.
Ruben J. Boado Eric Ka‐Wai Hui Jeff Zhiqiang Lu William M. Pardridge 《Biotechnology and bioengineering》2014,111(11):2317-2325
8.
9.
Feng Feng Haoling Zhang Zhaoqin Zhu Cong Li Yuxin Shi Zhiyong Zhang 《Luminescence》2014,29(6):614-620
Here, we aimed to assess the feasibility of anti‐ESAT‐6 monoclonal antibody (mAb) coupling with IR783 and rhodamine fluorescent probe in the detection of ESAT‐6 expression in tuberculosis tissue of mice using near‐infrared fluorescence imaging. IR783 and rhodamine were conjugated to the anti‐ESAT‐6 mAb or IgG. Mice in the experimental group were injected with fluorescence‐labeled mAb probe, and mice in the control group were injected with fluorescence‐labeled non‐specific IgG antibody. Twenty‐four hours later, the lung tissue of mice was examined using ex vivo near‐infrared fluorescence imaging. In addition, the contrast‐to‐noise ratio (CNR) was calculated by measuring the signal intensities of the pulmonary lesions, normal lung tissue and background noise. The frozen lung tissue section was examined under fluorescence microscopy and compared with hemoxylin and eosin (HE) staining. The ex vivo near‐infrared fluorescence imaging showed that the fluorescence signal in the lung tuberculosis lesions in the experimental group was significantly enhanced, whereas there was only a weak fluorescence signal or even no fluorescence signal in the control group. CNR values were 64.40 ± 7.02 (n = 6) and 8.75 ± 3.87 (n = 6), respectively (t = 17.01, p < 0.001). The fluorescence accumulation distribution detected under fluorescence microscopy was consistent with HE staining of the tuberculosis region. In conclusion, anti‐ESAT‐6 mAb fluorescent probe could target and be applied in specific ex vivo imaging of mice tuberculosis, and may be of further use in tuberculosis in living mice. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
10.
Significant progress has been made in targeting melanoma using small molecule inhibitors, but challenges remain. Here we describe the history of screening approaches in melanoma and their limitations. We propose several approaches to refine our screening models to enhance the discovery process. It is hoped that this discussion will stimulate further improvements in our development of small molecules inhibitors for treatment of melanoma patients. 相似文献
11.
作为一种纳米级别的囊泡,外泌体的相关研究近年来逐渐成为热点。外泌体来源于细胞内的多囊泡胞内体,经由细胞膜释放到细胞外。由于来自特定细胞类型的外泌体含有多种特异性的蛋白质和microRNA,使其成为了可以广泛用于疾病诊断及预后的新型生物标志物。相较于其他外源性药物载体,外泌体具有更低的免疫原性,并能够靶向作用于病变细胞。这使得由细胞天然产生或经过人工改造的外泌体作为一种新兴的药物载体具有良好的发展前景。特别是近几年,外泌体在临床应用领域的发展潜力不断获得拓展,针对肿瘤、糖尿病、心脑血管疾病、神经退行性病变等重大疾病,以外泌体为基础的疾病诊断和药物的研发都取得了快速的进步。本篇综述重点介绍了外泌体作为一种生物标志物在疾病诊断和预后中的应用,同时阐述了外泌体作为一种新兴的药物载体所具有的优势以及存在的问题。 相似文献
12.
Sulfatases are potential therapeutic biopharmaceuticals, as mutations in sulfatase genes leads to inherited disease. Mucopolysaccharidosis (MPS) Type II is caused by mutations in the lysosomal enzyme, iduronate-2-sulfatase (IDS). MPS-II affects the brain and enzyme replacement therapy is ineffective for the brain, because IDS does not cross the blood-brain barrier (BBB). To deliver IDS across the human BBB, the sulfatase has been re-engineered as an IgG-sulfatase fusion protein with a genetically engineered monoclonal antibody (MAb) against the human insulin receptor (HIR). The HIRMAb part of the HIRMAb-IDS fusion protein acts as a molecular Trojan horse to ferry the fused IDS across the BBB. Chinese hamster ovary (CHO) cells were stably transfected to produce the HIRMAb-IDS fusion protein. The fusion protein was triaged to the lysosomal compartment of MPS-II fibroblasts based on confocal microscopy, and 300 ng/mL medium concentrations normalized IDS enzyme activity in the cells. The HIRMAb-IDS fusion protein was tritiated and injected intravenously into the adult Rhesus monkey at a low dose of 0.1 mg/kg. The IDS enzyme activity in plasma was elevated 10-fold above the endogenous level, and therapeutic plasma concentrations were generated in vivo. The uptake of the HIRMAb-IDS fusion protein in the brain was sufficiently high to produce therapeutic concentrations of IDS in the brain following IV administration of the fusion protein. 相似文献
13.
14.
15.
The liposome- vesicles made by a double phospholipidic layers which may encapsulate aqueous solutions- have been introduced as drug delivery vehicles due to their structural flexibility in size, composition and bilayer fluidity as well as their ability to incorporate a large variety of both hydrophilic and hydrophobic compounds. With time the liposome formulations have been perfected so as to serve certain purposes and this lead to the design of \"intelligent\" liposomes which can stand specifically induced modifications of the bilayers or can be surfaced with different ligands that guide them to the specific target sites. We present here a brief overview of the current strategies in the design of liposomes as drug delivery carriers and the medical applications of liposomes in humans. 相似文献
16.
由于具有高效靶向药物传递的潜力,病毒颗粒已成为药物和生命科学领域的研究焦点.病毒颗粒具有病毒性载体和非病毒性载体的优点,同时克服了两者的局限性.病毒颗粒药物传递系统具有无毒、生物相容性、生物可降解性和非自动免疫等特点.研究表明,病毒颗粒能够在细胞间转运多种具有生物活性的分子,例如核酸或者基因、多肽、蛋白质以及其它抗癌药物等,因此在疾病治疗方面可能具有重要作用.如何制备携带有生物活性材料和治疗试剂的病毒颗粒和确定病毒颗粒药物的最佳剂型是目前该领域中挑战性的课题.本文综述了病毒颗粒技术多方面的特征及应用前景. 相似文献
17.
肿瘤是严重威胁人类健康的疾病。目前肿瘤治疗策略以手术切除、放化疗、靶向治疗和免疫治疗为主。单克隆抗体药物因具备高效性和低毒性等特点,逐渐成为肿瘤临床治疗中不可或缺的药物类型。噬菌体抗体库技术(phage antibody library technology,PALT)是一种新型的单克隆抗体制备技术,其将免疫球蛋白可变区VH(variable region of heavy chain)/VL(variable region of light chain)基因重组后整合在噬菌体载体上,并以融合蛋白的形式将抗体表达到噬菌体表面,从而获得多样性抗体库。抗体库经过“吸附-洗脱-扩增”过程即可筛选获得到特异结合抗原的抗体分子及其基因序列。PALT具有抗体生产周期短、抗体结构可塑性强、抗体产量大、多样性高和可直接生产人源化抗体等优点,已应用于乳腺癌、胃癌、肺癌和肝癌等肿瘤标志物的筛选和抗体药物的制备等领域。文中综述了PALT在肿瘤治疗中的研究进展及应用。 相似文献
18.
19.
磁性纳米材料具有独特的磁学性质,可响应外磁场,产生力、热等效应。如在静磁场下将药物磁靶向递送至肿瘤部位;低频交变磁场下可将纳米药物主动渗透至病灶部位,实现瘤内均一分布;中频交变磁场作用下磁滞损耗产生热和增强的活性氧,用于肿瘤治疗。磁性纳米材料同时具有尺寸依赖的磁学性质以及表面多功能化等特点,可将磁靶向、分子靶向以及磁热疗联合。此外,磁性纳米材料具有磁共振成像性能以及纳米酶催化特性,使其在肿瘤诊疗一体化治疗方面获得了广泛应用。近年来,纳米给药系统不断被优化,基于磁性纳米材料的肿瘤靶向治疗也得到了长足的发展。鉴于此,本文围绕提高靶向肿瘤治疗效果,从磁靶向药物治疗、被动靶向磁热疗和主动分子靶向磁热疗、纳米酶特性以及诊疗一体化应用等几方面出发,综述了基于磁性纳米材料的肿瘤靶向治疗研究进展。 相似文献
20.
D. M. Pegtel L. Peferoen S. Amor 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1652)
Homeostasis relies heavily on effective cell-to-cell communication. In the central nervous system (CNS), probably more so than in other organs, such communication is crucial to support and protect neurons especially during ageing, as well as to control inflammation, remove debris and infectious agents. Emerging evidence indicates that extracellular vesicles (EVs) including endosome-derived exosomes and fragments of the cellular plasma membrane play a key role in intercellular communication by transporting messenger RNA, microRNA (miRNA) and proteins. In neurodegenerative diseases, secreted vesicles not only remove misfolded proteins, but also transfer aggregated proteins and prions and are thus thought to perpetuate diseases by ‘infecting’ neighbouring cells with these pathogenic proteins. Conversely, in other CNS disorders signals from stressed cells may help control inflammation and inhibit degeneration. EVs may also reflect the status of the CNS and are present in the cerebrospinal fluid indicating that exosomes may act as biomarkers of disease. That extracellular RNA and in particular miRNA, can be transferred by EV also indicates that these vesicles could be used as carriers to specifically target the CNS to deliver immune modulatory drugs, neuroprotective agents and anti-cancer drugs. Here, we discuss the recent evidence indicating the potential role of exosomes in neurological disorders and how knowledge of their biology may enable a Trojan-horse approach to deliver drugs into the CNS and treat neurodegenerative and other disorders of the CNS. 相似文献