首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Structured illumination microscopy (SIM) is the commonly used super‐resolution (SR) technique for imaging subcellular dynamics. However, due to its need for multiple illumination patterns, the frame rate is just a fraction of that of conventional microscopy and is thus too slow for fast dynamic studies. A new SR image reconstruction method that maximizes the use of each subframe of the acquisition series is proposed for improving the super‐resolved frame rate by N times for N illumination directions. The method requires no changes in raw data and is appropriate for many versions of SIM setup, including those implementing fast illumination pattern generation mechanism based on spatial light modulator or digital micromirror device. The performance of the proposed method is demonstrated through imaging the highly dynamic endoplasmic reticulum where continuous rapid growths or shape changes of tiny structures are observed.   相似文献   

2.
    
Oblique plane microscopy (OPM) is a form of light sheet microscopy that uses a single high numerical aperture microscope objective for both fluorescence excitation and collection. In this paper, measurements of the relative collection efficiency of OPM are presented. An OPM system incorporating two sCMOS cameras is then introduced that enables single isolated cardiac myocytes to be studied continuously for 22 seconds in two dimensions at 667 frames per second with 960 × 200 pixels and for 30 seconds with 960 × 200 × 20 voxels at 25 volumes per second. In both cases OPM is able to record in two spectral channels, enabling intracellular calcium to be studied via the probe Fluo‐4 AM simultaneously with the sarcolemma and transverse tubule network via the membrane dye Cellmask Orange. The OPM system was then applied to determine the spatial origin of spontaneous calcium waves for the first time and to measure the cell transverse tubule structure at their point of origin. Further results are presented to demonstrate that the OPM system can also be used to study calcium spark parameters depending on their relationship to the transverse tubule structure.

  相似文献   


3.
    
Optical‐resolution photoacoustic microscopy (OR‐PAM), which has been widely used and studied as a noninvasive and in vivo imaging technique, can yield high‐resolution and absorption contrast images. Recently, metallic nanoparticles and dyes, such as gold nanoparticles, methylene blue, and indocyanine green, have been used as contrast agents of OR‐PAM. This study demonstrates real‐time functional OR‐PAM images with high‐speed alternating illumination at 2 wavelengths. To generate 2 wavelengths, second harmonic generation at 532 nm with an LBO crystal and a pump wavelength of 1064 nm is applied at a pulse repetition rate of 300 kHz. For alternating illumination, an electro‐optical modulator is used as an optical switch. Therefore, the A‐line rate for the functional image is 150 kHz, which is half of the laser repetition rate. To enable fast signal processing and real‐time displays, parallel signal processing using a graphics processing unit (GPU) is performed. OR‐PAM images of the distribution of blood vessels and gold nanorods in a BALB/c‐nude mouse's ear can be simultaneously obtained with 500 × 500 pixels and real‐time display at 0.49 fps.   相似文献   

4.
    
We report a flexible light‐sheet fluorescence microscope (LSFM) designed for studying dynamic events in cardiac tissue at high speed in 3D and the correlation of these events to cell microstructure. The system employs two illumination‐detection modes: the first uses angle‐dithering of a Gaussian light sheet combined with remote refocusing of the detection plane for video‐rate volumetric imaging; the second combines digitally‐scanned light‐sheet illumination with an axially‐swept light‐sheet waist and stage‐scanned acquisition for improved axial resolution compared to the first mode. We present a characterisation of the spatial resolution of the system in both modes. The first illumination‐detection mode achieves dual spectral‐channel imaging at 25 volumes per second with 1024 × 200 × 50 voxel volumes and is demonstrated by time‐lapse imaging of calcium dynamics in a live cardiomyocyte. The second illumination‐detection mode is demonstrated through the acquisition of a higher spatial resolution structural map of the t‐tubule network in a fixed cardiomyocyte cell.  相似文献   

5.
    
Cryo‐electron microscopy (cryo‐EM) can be used to elucidate the 3D structure of macromolecular complexes. Driven by technological breakthroughs in electron‐microscope and electron‐detector development, coupled with improved image‐processing procedures, it is now possible to reach high resolution both in single‐particle analysis and in cryo‐electron tomography and subtomogram‐averaging approaches. As a consequence, the way in which cryo‐EM data are collected has changed and new challenges have arisen in terms of microscope alignment, aberration correction and imaging parameters. This review describes how high‐end data collection is performed at the EMBL Heidelberg cryo‐EM platform, presenting recent microscope implementations that allow an increase in throughput while maintaining aberration‐free imaging and the optimization of acquisition parameters to collect high‐resolution data.  相似文献   

6.
    
As an important method to accurately and timely diagnose stroke and study physiological characteristics and pathological mechanism in it, imaging technology has gone through more than a century of iteration. The interaction of cells densely packed in the brain is three-dimensional (3D), but the flat images brought by traditional visualization methods show only a few cells and ignore connections outside the slices. The increased resolution allows for a more microscopic and underlying view. Today''s intuitive 3D imagings of micron or even nanometer scale are showing its essentiality in stroke. In recent years, 3D imaging technology has gained rapid development. With the overhaul of imaging mediums and the innovation of imaging mode, the resolution has been significantly improved, endowing researchers with the capability of holistic observation of a large volume, real-time monitoring of tiny voxels, and quantitative measurement of spatial parameters. In this review, we will summarize the current methods of high-resolution 3D imaging applied in stroke.  相似文献   

7.
    
A wide variety of subcutaneous soft‐tissue masses may be seen in clinical practice. Clinical examination based on palpation alone is often insufficient to identify the nature and exact origin of the mass, in which case imaging is necessary. We used handheld multispectral optoacoustic imaging technology (MSOT) in a proof‐of‐principle study to image superficial fatty tumors and compare the images with diagnostic ultrasound. Fatty tumors were clearly visualized by MSOT and exhibited a spectral signature which differed from normal fatty tissue or muscle tissue. Our findings further indicated that MSOT offers highly complementary contrast to sonography. Based on the performance achieved, we foresee a promising role for MSOT in the diagnosis and evaluation of subcutaneous soft‐tissue masses. Picture : Pseudo‐color representation of a cross‐sectional multi‐spectral optoacoustic slice through a subcutaneous lipoma. Multi‐spectral information is encoded in color. The lipoma can clearly be distinguished from the surrounding tissue based on its color. Scalebar 1 cm.  相似文献   

8.
    
Light‐sheet fluorescence microscopy (LSFM) is a powerful tool for biological studies because it allows for optical sectioning of dynamic samples with superior temporal resolution. However, LSFM using 2 orthogonally co‐aligned objectives requires a special sample geometry, and volumetric imaging speed is limited due to physical sample translation. This paper describes an oblique scanning 2‐photon LSFM (OS‐2P‐LSFM) that eliminates these limitations by using a single objective near the sample and a refractive scanning‐descanning system. This system also provides improved light‐sheet confinement against scattering by using a 2‐photon Bessel beam. The OS‐2P‐LSFM hold promise for studying structural, functional and dynamic aspects of living tissues and organisms because it allows for high‐speed, translation‐free and scattering‐robust 3D imaging of large biological specimens.   相似文献   

9.
    
We demonstrate an accurate quantitative characterization of absolute two‐ and three‐photon absorption (2PA and 3PA) action cross sections of a genetically encodable fluorescent marker Sypher3s. Both 2PA and 3PA action cross sections of this marker are found to be remarkably high, enabling high‐brightness, cell‐specific two‐ and three‐photon fluorescence brain imaging. Brain imaging experiments on sliced samples of rat's cortical areas are presented to demonstrate these imaging modalities. The 2PA action cross section of Sypher3s is shown to be highly sensitive to the level of pH, enabling pH measurements via a ratiometric readout of the two‐photon fluorescence with two laser excitation wavelengths, thus paving the way toward fast optical pH sensing in deep‐tissue experiments.  相似文献   

10.
    
We have developed a reflection‐mode switchable subwavelength Bessel‐beam (BB) and Gaussian‐beam (GB) photoacoustic microscopy (PAM) system. To achieve both reflection‐mode and high resolution, we tightly attached a very small ultrasound transducer to an optical objective lens with numerical aperture of 1.0 and working distance of 2.5 mm. We used axicon and an achromatic doublet in our system to obtain the extended depth of field (DOF) of the BB. To compare the DOF performance achieved with our BB‐PAM system against GB‐PAM system, we designed our system so that the GB can be easily generated by simply removing the lenses. Using a 532 nm pulse laser, we achieved the lateral resolutions of 300 and 270 nm for BB‐PAM and GB‐PAM, respectively. The measured DOF of BB‐PAM was approximately 229 μm, which was about 7× better than that of GB‐PAM. We imaged the vasculature of a mouse ear using BB‐PAM and GB‐PAM and confirmed that the DOF of BB‐PAM is much better than the DOF of GB‐PAM. Thus, we believe that the high resolution achieved at the extended DOF by our system is very practical for wide range of biomedical research including red blood cell (RBC) migration in blood vessels at various depths and observation of cell migration or cell culture.   相似文献   

11.
    
Structured illumination microscopy (SIM) is a well‐established method for optical sectioning and super‐resolution. The core of structured illumination is using a periodic pattern to excite image signals. This work reports a method for estimating minor pattern distortions from the raw image data and correcting these distortions during SIM image processing. The method was tested with both simulated and experimental image data from two‐photon Bessel light‐sheet SIM. The results proves the method is effective in challenging situations, where strong scattering background exists, signal‐to‐noise ratio (SNR) is low and the sample structure is sparse. Experimental results demonstrate restoring synaptic structures in deep brain tissue, despite the presence of strong light scattering and tissue‐induced SIM pattern distortion.  相似文献   

12.
    
Optical imaging is a key modality for observing biological specimen with higher spatial resolution. However, scattering and absorption of light in tissues are inherent barriers in maximizing imaging depth in biological tissues. To achieve this goal, use of light at near‐infrared spectrum can improve the present situation. Here, the capability of saturated two‐photon saturated excitation (TP‐SAX) fluorescence microscopy to image at depths of >2.0 mm, with submicron resolution in transparent mouse brain imaging, is demonstrated. At such depths with scattering‐enlarged point spread function (PSF), we find that TP‐SAX is capable to provide spatial resolution improvement compared to its corresponding TPFM, which is on the other hand already providing a much improved resolution compared with single‐photon confocal fluorescence microscopy. With the capability to further improve spatial resolution at such deep depth with scattering‐enlarged PSF, TP‐SAX can be used for exquisite visualization of delicate cerebral neural structure in the scattering regime with a submicron spatial resolution inside intact mouse brain.   相似文献   

13.
    
Photoacoustic computed tomography (PACT) is a non‐invasive imaging technique offering high contrast, high resolution, and deep penetration in biological tissues. We report a PACT system equipped with a high frequency linear transducer array for mapping the microvascular network of a whole mouse brain with the skull intact and studying its hemodynamic activities. The linear array was scanned in the coronal plane to collect data from different angles, and full‐view images were synthesized from the limited‐view images in which vessels were only partially revealed. We investigated spontaneous neural activities in the deep brain by monitoring the concentration of hemoglobin in the blood vessels and observed strong interhemispherical correlations between several chosen functional regions, both in the cortical layer and in the deep regions. We also studied neural activities during an epileptic seizure and observed the epileptic wave spreading around the injection site and the wave propagating in the opposite hemisphere.

  相似文献   


14.
    
STED (stimulated emission depletion) microscopy is one of the most promising super‐resolution fluorescence microscopies,due to its fast imaging and ultra‐high resolution. In this paper, we present a dual‐color STED microscope with a single laser source. Polarization beam splitters are used to separate the output from a supercontinuum laser source into four laser beams, including two excitation beams (488, 635 nm) and two depletion beams (592, 775 nm). These four laser beams are then used to build a low cost dual‐color STED system to achieve a spatial resolution of 75 nm in cell samples.  相似文献   

15.
基于样品及点源光声信号逆卷积的光声成像方法   总被引:2,自引:0,他引:2       下载免费PDF全文
光声成像是一种新的生物组织成像方法,在目前的光声成像中,都是通过样品光声信号和超声探测器的脉冲响应来计算样品光吸收的投影,但是由于无法获得超声探测器较准确的脉冲响应,影响重建图像质量。提出一种新的计算样品光吸收投影的方法,从理论上给出了样品光吸收投影和样品及点源光声信号的关系,由样品及点源光声信号的逆卷积可直接计算样品光吸收的投影,点源光声信号通过聚焦入射激光直接测得。试验结果显示,重建图像和样品的相对位置、形状及尺寸完全吻合,成像系统空间分辨率达到0.3mm,证明这是一种有效的光声成像方法。  相似文献   

16.
    
We describe a novel scanning approach for miniaturized photoacoustic tomography (PAT), based on fan‐shaped scanning of a single transducer at one or two discrete positions. This approach is tested and evaluated using several phantom and animal experiments. The results obtained show that this new scanning approach provides high image quality in the configuration of miniaturized handheld or endoscopic PAT with improved effective field of view and penetration depth.  相似文献   

17.
    
Existing mammographic screening solutions are generally associated with several major drawbacks, such as exposure to ionizing radiation or insufficient sensitivity in younger populations with radiographically‐dense breast. Even when combined with ultrasound or magnetic resonance imaging, X‐Ray mammography may still attain unspecific or false positive results. Thus, development of new breast imaging tools represents a timely medical challenge. We report on a new approach to high‐resolution functional and anatomical breast angiography using volumetric hand‐held optoacoustic tomography, which employs light intensities safe for human use. Experiments in young healthy volunteers with fibroglandular‐dominated dense breasts revealed the feasibility of rendering three‐dimensional images representing vascular anatomy and functional blood oxygenation parameters at video rate. Sufficient contrast was achieved at depths beyond 2 cm within dense breasts without compromising the real‐time imaging performance. The suggested solution may thus find applicability as a standalone or supplemental screening tool for early detection and follow‐up of carcinomas in radiographically‐dense breasts.

Volumetric handheld optoacoustic tomography scanner uses safe pulses of near‐infrared light to render three‐dimensional images of deep vascular anatomy, blood oxygenation and breast parenchyma at video rate.  相似文献   


18.
    
Intravital imaging has emerged as a novel and efficient tool for visualization of in situ dynamics of cellular behaviors and cell‐microenvironment interactions in live animals, based on desirable microscopy techniques featuring high resolutions, deep imaging and low phototoxicity. Intravital imaging, especially based on multi‐photon microscopy, has been used in bone research for dynamics visualization of a variety of physiological and pathological events at the cellular level, such as bone remodeling, hematopoiesis, immune responses and cancer development, thus, providing guidance for elucidating novel cellular mechanisms in bone biology as well as guidance for new therapies. This review is aimed at interpreting development and advantages of intravital imaging in bone research, and related representative discoveries concerning bone matrices, vessels, and various cells types involved in bone physiologies and pathologies. Finally, current limitations, further refinement, and extended application of intravital imaging in bone research are concluded.   相似文献   

19.
    
The replication of HIV‐1, like that of all viruses, is intimately connected with cellular structures and pathways. For many years, bulk biochemical and cell biological methods were the main approaches employed to investigate interactions between HIV‐1 and its host cell. However, during the past decade advancements in fluorescence imaging technologies opened new possibilities for the direct visualization of individual steps occurring throughout the viral replication cycle. Electron microscopy (EM) methods, which have traditionally been employed for the study of viruses, are complemented by fluorescence microscopy (FM) techniques that allow us to follow the dynamics of virus–cell interaction. Subdiffraction fluorescence microscopy, as well as correlative EM/FM approaches, are narrowing the fundamental gap between the high structural resolution provided by EM and the high temporal resolution and throughput accomplished by FM. The application of modern microscopy to the study of HIV‐1–host cell interactions has provided insights into the biology of the virus which could not easily, or not at all, have been gained by other methods. Here, we review how modern fluorescence imaging techniques enhanced our knowledge of the dynamic and structural changes involved in HIV‐1 particle formation.   相似文献   

20.
    
Label‐free quantitative imaging is highly desirable for studying live cells by extracting pathophysiological information without perturbing cell functions. Here, we demonstrate a novel label‐free multimodal optical imaging system with the capability of providing comprehensive morphological and molecular attributes of live cells. Our morpho‐molecular microscopy (3M) system draws on the combined strength of quantitative phase microscopy (QPM) and Raman microscopy to probe the morphological features and molecular fingerprinting characteristics of each cell under observation. While the commonr‐path geometry of our QPM system allows for highly sensitive phase measurement, the Raman microscopy is equipped with dual excitation wavelengths and utilizes the same detection and dispersion system, making it a distinctive multi‐wavelength system with a small footprint. We demonstrate the applicability of the 3M system by investigating nucleated and nonnucleated cells. This integrated label‐free platform has a promising potential in preclinical research, as well as in clinical diagnosis in the near future.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号