共查询到20条相似文献,搜索用时 0 毫秒
1.
Martin TE Lloyd P Bosque C Barton DC Biancucci AL Cheng YR Ton R 《Evolution; international journal of organic evolution》2011,65(6):1607-1622
Causes of interspecific variation in growth rates within and among geographic regions remain poorly understood. Passerine birds represent an intriguing case because differing theories yield the possibility of an antagonistic interaction between nest predation risk and food delivery rates on evolution of growth rates. We test this possibility among 64 Passerine species studied on three continents, including tropical and north and south temperate latitudes. Growth rates increased strongly with nestling predation rates within, but not between, sites. The importance of nest predation was further emphasized by revealing hidden allometric scaling effects. Nestling predation risk also was associated with reduced total feeding rates and per-nestling feeding rates within each site. Consequently, faster growth rates were associated with decreased per-nestling food delivery rates across species, both within and among regions. These relationships suggest that Passerines can evolve growth strategies in response to predation risk whereby food resources are not the primary limit on growth rate differences among species. In contrast, reaction norms of growth rate relative to brood size suggest that food may limit growth rates within species in temperate, but not tropical, regions. Results here provide new insight into evolution of growth strategies relative to predation risk and food within and among species. 相似文献
2.
Njal Rollinson Viktor Nilsson‐
rtman Locke Rowe 《Evolution; international journal of organic evolution》2019,73(11):2162-2174
Most life forms exhibit a correlated evolution of adult size (AS) and size at independence (SI), giving rise to AS–SI scaling relationships. Theory suggests that scaling arises because relatively large adults have relatively high reproductive output, resulting in strong density‐dependent competition in early life, where large size at independence provides a competitive advantage to juveniles. The primary goal of our study is to test this density hypothesis, using large datasets that span the vertebrate tree of life (fishes, amphibians, reptiles, birds, and mammals). Our secondary goal is to motivate new hypotheses for AS–SI scaling by exploring how subtle variation in life‐histories among closely related species is associated with variation in scaling. Our phylogenetically informed comparisons do not support the density hypothesis. Instead, exploration of AS–SI scaling among life‐history variants suggests that steeper AS–SI scaling slopes are associated with evolutionary increases in size at independence. We suggest that a positive association between size at independence and juvenile growth rate may represent an important mechanism underlying AS–SI scaling, a mechanism that has been underappreciated by theorists. If faster juvenile growth is a consequence of evolutionary increases in size at independence, this may help offset the cost of delayed maturation, leading to steeper AS–SI scaling slopes. 相似文献
3.
Parents can increase the fitness of their offspring by allocating nutrients to eggs and/or providing care for eggs and offspring. Although we have a good understanding of the adaptive significance of both egg size and parental care, remarkably little is known about the co-evolution of these two mechanisms for increasing offspring fitness. Here, we report a parental removal experiment on the burying beetle Nicrophorus vespilloides in which we test whether post-hatching parental care masks the effect of egg size on offspring fitness. As predicted, we found that the parent's presence or absence had a strong main effect on larval body mass, whereas there was no detectable effect of egg size. Furthermore, egg size had a strong and positive effect on offspring body mass in the parent's absence, whereas it had no effect on offspring body mass in the parent's presence. These results support the suggestion that the stronger effect of post-hatching parental care on offspring growth masks the weaker effect of egg size. We found no correlation between the number and size of eggs. However, there was a negative correlation between larval body mass and brood size in the parent's presence, but not in its absence. These findings suggest that the trade-off between number and size of offspring is shifted from the egg stage towards the end of the parental care period and that post-hatching parental care somehow moderates this trade-off. 相似文献
4.
Ivan Gomez‐Mestre Robert Alexander Pyron John J. Wiens 《Evolution; international journal of organic evolution》2012,66(12):3687-3700
Understanding phenotypic diversity requires not only identification of selective factors that favor origins of derived states, but also factors that favor retention of primitive states. Anurans (frogs and toads) exhibit a remarkable diversity of reproductive modes that is unique among terrestrial vertebrates. Here, we analyze the evolution of these modes, using comparative methods on a phylogeny and matched life‐history database of 720 species, including most families and modes. As expected, modes with terrestrial eggs and aquatic larvae often precede direct development (terrestrial egg, no tadpole stage), but surprisingly, direct development evolves directly from aquatic breeding nearly as often. Modes with primitive exotrophic larvae (feeding outside the egg) frequently give rise to direct developers, whereas those with nonfeeding larvae (endotrophic) do not. Similarly, modes with eggs and larvae placed in locations protected from aquatic predators evolve frequently but rarely give rise to direct developers. Thus, frogs frequently bypass many seemingly intermediate stages in the evolution of direct development. We also find significant associations between terrestrial reproduction and reduced clutch size, larger egg size, reduced adult size, parental care, and occurrence in wetter and warmer regions. These associations may help explain the widespread retention of aquatic eggs and larvae, and the overall diversity of anuran reproductive modes. 相似文献
5.
Empirical links between egg size and duration of parental care in fishes have generated a considerable amount of theory concerning life history evolution. However, to date, this link has not been investigated in relation to other important life-history traits such as clutch size and body size, or while controlling for shared ancestry between species. We provide the first phylogenetically based tests using a database with information on egg size, clutch size, body size and care duration in cichlid fishes (Cichlidae). Multiple regression analyses, based on independent contrasts on both the species and the genus level, showed that clutch size is the variable most closely related to duration of care. This pattern appeared to be driven by post-hatch care relationships. Our results show that, contrary to expectation, there is no positive link between egg size and care duration in Cichlidae. Instead, greater reproductive output through increased clutch size investment appears to have coevolved with greater care of offspring. We suggest that re-evaluation of the generality of current models of the evolution of egg size under parental care in fishes is needed. 相似文献
6.
Sabine M. Hille Caren B. Cooper 《Biological reviews of the Cambridge Philosophical Society》2015,90(1):204-213
Life‐history traits in birds, such as lifespan, age at maturity, and rate of reproduction, vary across environments and in combinations imposed by trade‐offs and limitations of physiological mechanisms. A plethora of studies have described the diversity of traits and hypothesized selection pressures shaping components of the survival–reproduction trade‐off. Life‐history variation appears to fall along a slow–fast continuum, with slow pace characterized by higher investment in survival over reproduction and fast pace characterized by higher investment in reproduction over survival. The Pace‐of‐Life Syndrome (POLS) is a framework to describe the slow–fast axis of variation in life‐history traits and physiological traits. The POLS corresponds to latitudinal gradients, with tropical birds exhibiting a slow pace of life. We examined four possible ways that the traits of high‐elevation birds might correspond to the POLS continuum: (i) rapid pace, (ii) tropical slow pace, (iii) novel elevational pace, or (iv) constrained pace. Recent studies reveal that birds breeding at high elevations in temperate zones exhibit a combination of traits creating a unique elevational pace of life with a central trade‐off similar to a slow pace but physiological trade‐offs more similar to a fast pace. A paucity of studies prevents consideration of the possibility of a constrained pace of life. We propose extending the POLS framework to include trait variation of elevational clines to help to investigate complexity in global geographic patterns. 相似文献
7.
We present a simple analytical model to investigate the conditionsfor the evolution of obligate interspecific brood parasitismin birds, based on clutch size optimization, when birds canlay more eggs than their optimal clutch size. The results showthat once intraspecific parasitism has appeared (i.e., femalesstart to spread their eggs over their own and other nests) the
evolutionarily stable number of eggs laid in its own nest decreases.Two possible ESSs exist: (1) either the evolutionarily stablenumber of eggs laid in its own nest is larger than zero, anda fraction of the total number of eggs is laid parasitically(i.e., intraspecific parasitism); and (2) either the evolutionarilystable number of eggs laid in its own nest is zero and all
eggs are laid parasitically. Since all females lay parasitically,this could favor the evolution of obligate interspecific broodparasitism. The key parameter allowing the shift from intraspecificto obligate interspecific parasitism is the intensity of density-dependentmortality within broods (i.e., nestling competition). Strongnestling competition, as in altricial species, can lead toan ESS where all eggs are laid parasitically. Altricial speciesare, therefore, predicted to evolve more easily toward obligate
interspecific parasitism than precocial species. These predictionsfit the observed distribution of brood parasitism in birds,where only one species out of 95 obligate interspecific parasitesexhibits a precocial mode of development. Different nestlingsurvival functions provided similar findings (i.e., obligatebrood parasitism is more likely to evolve in altricial species),suggesting that these results are robust with respect to themain assumption of the model. 相似文献
8.
Jian-Chuan Li Li-Fang Gao Li-Qing Fan Shi-Yang Wong Cong Wei Hai-Yang Zhang Wen Zhang Bo Du 《Ibis》2020,162(4):1186-1197
Life-history theory predicts that parents refer to the resources they hold to determine their breeding strategy. In multi-brooded species, it is hypothesized that single-brooded parents produce larger clutches and raise offspring with a brood survival strategy, whereas multi-brooded parents only do this under good breeding conditions. Under poor conditions, they produce smaller clutches and raise offspring with a brood reduction strategy. We tested this hypothesis in the Brown-cheeked Laughing Thrush Trochalopteron henrici, which can breed twice a year on the Tibetan Plateau, by investigating the life-history traits and provisioning behaviours of single- and double-brooded parents. Single-brooded parents laid larger clutches of smaller eggs and produced more and larger fledglings than double-brooded parents in their first brood. Double-brooded parents produced smaller clutches of larger eggs but fledged larger nestlings in their first brood than in their second brood. As single-brooded parents only need to raise one brood a year, then producing and raising as many offspring as possible (i.e. the brood survival strategy in a large brood) can maximize their reproductive success. For double-brooded parents, producing and raising fewer offspring in the first brood (i.e. the brood survival strategy in a small brood) can ensure their nesting success during a short breeding cycle. Additionally, producing more offspring but raising larger nestlings in the second brood (i.e. the brood reduction strategy in a large brood) can select for offspring of higher quality within the brood. Our findings indicate that different tradeoffs between single- and double-brooded parents in egg-laying and nestling-raising may be an adaptation to the seasonal variation in environmental conditions. 相似文献
9.
The positive correlation between maternal size and offspring size: fitting pieces of a life‐history puzzle 下载免费PDF全文
Njal Rollinson Locke Rowe 《Biological reviews of the Cambridge Philosophical Society》2016,91(4):1134-1148
The evolution of investment per offspring (I) is often viewed through the lens of the classic theory, in which variation among individuals in a population is not expected. A substantial departure from this prediction arises in the form of correlations between maternal body size and I, which are observed within populations in virtually all taxonomic groups. Based on the generality of this observation, we suggest it is caused by a common underlying mechanism. We pursue a unifying explanation for this pattern by reviewing all theoretical models that attempt to explain it. We assess the generality of the mechanism upon which each model is based, and the extent to which data support its predictions. Two classes of adaptive models are identified: models that assume that the correlation arises from maternal influences on the relationship between I and offspring fitness [w(I)], and those that assume that maternal size influences the relationship between I and maternal fitness [W(I)]. The weight of evidence suggests that maternal influences on w(I) are probably not very general, and even for taxa where maternal influences on w(I) are likely, experiments fail to support model predictions. Models that assume that W(I) varies with maternal size appear to offer more generality, but the current challenge is to identify a specific and general mechanism upon which W(I) varies predictably with maternal size. Recent theory suggests the exciting possibility that a yet unknown mechanism modifies the offspring size–number trade‐off function in a manner that is predictable with respect to maternal size, such that W(I) varies with size. We identify two promising avenues of inquiry. First, the trade‐off might be modified by energetic costs that are associated with the initiation of reproduction (‘overhead costs’) and that scale with I, and future work could investigate what specific overhead costs are generally associated with reproduction and whether these costs scale with I. Second, the trade‐off might be modified by virtue of condition‐dependent offspring provisioning coupled with metabolic factors, and future work could investigate the proximate cause of, and generality of, condition‐dependent offspring provisioning. Finally, drawing on the existing literature, we suggest that maternal size per se is not causatively related to variation in I, and the mechanism involved in the correlation is instead linked to maternal nutritional status or maternal condition, which is usually correlated with maternal size. Using manipulative experiments to elucidate why females with high nutritional status typically produce large offspring might help explain what specific mechanism underlies the maternal‐size correlation. 相似文献
10.
Geographic variation in avian incubation periods and parental influences on embryonic temperature 总被引:1,自引:0,他引:1
Martin TE Auer SK Bassar RD Niklison AM Lloyd P 《Evolution; international journal of organic evolution》2007,61(11):2558-2569
Theory predicts shorter embryonic periods in species with greater embryo mortality risk and smaller body size. Field studies of 80 passerine species on three continents yielded data that largely conflicted with theory; incubation (embryonic) periods were longer rather than shorter in smaller species, and egg (embryo) mortality risk explained some variation within regions, but did not explain larger differences in incubation periods among geographic regions. Incubation behavior of parents seems to explain these discrepancies. Bird embryos are effectively ectothermic and depend on warmth provided by parents sitting on the eggs to attain proper temperatures for development. Parents of smaller species, plus tropical and southern hemisphere species, commonly exhibited lower nest attentiveness (percent of time spent on the nest incubating) than larger and northern hemisphere species. Lower nest attentiveness produced cooler minimum and average embryonic temperatures that were correlated with longer incubation periods independent of nest predation risk or body size. We experimentally tested this correlation by swapping eggs of species with cool incubation temperatures with eggs of species with warm incubation temperatures and similar egg mass. Incubation periods changed (shortened or lengthened) as expected and verified the importance of egg temperature on development rate. Slower development resulting from cooler temperatures may simply be a cost imposed on embryos by parents and may not enhance offspring quality. At the same time, incubation periods of transferred eggs did not match host species and reflect intrinsic differences among species that may result from nest predation and other selection pressures. Thus, geographic variation in embryonic development may reflect more complex interactions than previously recognized. 相似文献
11.
The pay‐offs of maternal care increase as offspring develop,favouring extended provisioning in an egg‐feeding frog 下载免费PDF全文
M. B. Dugas M. P. Moore R. A. Martin C. L. Richards‐Zawacki C. G. Sprehn 《Journal of evolutionary biology》2016,29(10):1977-1985
Offspring quantity and quality are components of parental fitness that cannot be maximized simultaneously. When the benefits of investing in offspring quality decline, parents are expected to shift investment towards offspring quantity (other reproductive opportunities). Even when mothers retain complete control of resource allocation, offspring control whether to allocate investment to growth or development towards independence, and this shared control may generate parent–offspring conflict over the duration of care. We examined these predictions by, in a captive colony, experimentally removing tadpoles of the strawberry poison frog (Oophaga pumilio) from the mothers that provision them with trophic eggs throughout development. Tadpoles removed from their mothers were no less likely to survive to nutritional independence (i.e. through metamorphosis) than were those that remained with their mothers, but these offspring were smaller at metamorphosis and were less likely to survive to reach adult size, even though they were fed ad libitum. Tadpoles that remained with their mothers developed more slowly than those not receiving care, a pattern that might suggest that offspring extracted more care than was in mothers’ best interests. However, the fitness returns of providing care increased with offspring development, suggesting that mothers would be best off continuing care until tadpoles initiated metamorphosis. Although the benefits of parental investment in offspring quality are often thought to asymptote at high levels, driving parent–offspring conflict over weaning, this assumption may not hold over natural ranges of investment, with selection on both parents and offspring favouring extended durations of parental care. 相似文献
12.
XIANG JI WEI-GUO DU ZHI-HUA LIN LAI-GAO LUO 《Biological journal of the Linnean Society. Linnean Society of London》2007,91(2):315-324
We measured the reproductive output of Takydromus septentrionalis collected over 5 years between 1997 and 2005 to test the hypothesis that reproductive females should allocate an optimal fraction of accessible resources in a particular clutch and to individual eggs. Females laid 1–7 clutches per breeding season, with large females producing more, as well as larger clutches, than did small females. Clutch size, clutch mass, annual fecundity, and annual reproductive output were all positively related to female size (snout–vent length). Females switched from producing more, but smaller eggs in the first clutch to fewer, but larger eggs in the subsequent clutches. The mass-specific clutch mass was greater in the first clutch than in the subsequent clutches, but it did not differ among the subsequent clutches. Post-oviposition body mass, clutch size, and egg size showed differing degrees of annual variation, but clutch mass of either the first or the second clutch remained unchanged across the sampling years. The regression line describing the size–number trade-off was higher in the subsequent clutch than in the first clutch, but neither the line for first clutch, nor the line for the second clutch varied among years. Reproduction retarded growth more markedly in small females than in large ones. Our data show that: (1) trade-offs between size and number of eggs and between reproduction and growth (and thus, future reproduction) are evident in T. septentrionalis ; (2) females allocate an optimal fraction of accessible resources in current reproduction and to individual eggs; and (3) seasonal shifts in reproductive output and egg size are determined ultimately by natural selection. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 315–324. 相似文献
13.
The overproduction of offspring is commonly associated with high hatching failure and a mechanism for dispensing with surplus young. We used experimental evolution of burying beetle populations Nicrophorus vespilloides to determine causality in these correlations. We asked does eliminating the mechanism for killing “spare” offspring cause the evolution of a more restrained clutch size and consequently select for reduced hatching failure? N. vespilloides typically overproduces eggs but kills 1st instar larvae through partial filial cannibalism during brood care. We established replicate evolving populations that either could practice filial cannibalism (Full Care) or could not, by removing parents before their young hatched (No Care). After 20+ generations of experimental evolution, we measured clutch size and hatching success. We found that No Care females produced fewer eggs than Full Care females when allowed to breed on a small corpse, a finding not explained by differences in female quality. On larger corpses, females from both populations laid similar numbers of eggs. Furthermore, hatching success was greater in the No Care populations on small corpses. Our results suggest that the adaptive overproduction of offspring depends on a mechanism for eliminating surplus young and that killing offspring, in turn, relaxes selection against hatching failure. 相似文献
14.
Interaction between parental care and sibling competition: parents enhance offspring growth and exacerbate sibling competition 总被引:2,自引:0,他引:2
Smiseth PT Lennox L Moore AJ 《Evolution; international journal of organic evolution》2007,61(10):2331-2339
Species with elaborate parental care often also show intense sibling competition over resources provided by parents, suggesting joint evolution of these two traits. Despite this, the evolution of elaborate parental care and the evolution of intense sibling competition are often studied separately. Here, we examine the interaction between parental food provisioning and sibling competition for resources through the joint manipulation of the presence or absence of parents and brood size in a species with facultative parental care: the burying beetle Nicrophorus vespilloides. The effect of the interaction between the presence or absence of parents and brood size was strong; brood size had a strong effect on growth when parents provided care, but no effect when parents were absent. As in previous studies, offspring grew faster when parents were present than when parents were absent, and offspring grew faster in smaller broods than in larger broods. Our behavioral observations showed that brood size had a negative effect on both the amount of time parents spent providing resources to individual offspring and the offspring's effectiveness of begging, confirming that the level of sibling competition increased with brood size. Furthermore, offspring in larger broods shifted more from begging toward self-feeding as they grew older compared to offspring in small broods. Our study provides novel insights into the joint evolution of parental care and sibling competition, and the evolution of offspring begging signals. We discuss the implications of our results in light of recent theoretical work on the evolution of parental care, sibling competition, and offspring begging signals. 相似文献
15.
16.
ABSTRACT. Although Savannah Sparrows ( Passerculus sandwichensis ) have been well studied across their North American range, few data are available for populations that breed in high-elevation habitats. We collected data over six years on the demography of a population of Savannah Sparrows ( P. s. anthinus ) breeding in alpine tundra and sub-alpine meadows in northern British Columbia, Canada. The mean duration of the breeding season at our site was 45.5 d, and pairs produced a maximum of one brood per season. Clutch sizes varied annually (mean = 4.37, range = 3.90 – 4.71 eggs). Nest fate also varied among years (range = 33 – 92%) due to variation in abiotic (weather) and biotic (predators) conditions. Uncorrected return rates of banded birds were 68% for adults and 17% for juveniles ( N = 22 and 102, respectively). However, when resighting probability was taken into account, apparent annual survival was 75% for adults and 34% for juveniles. Compared to populations at lower elevations, Savannah Sparrows in our study had shorter breeding seasons, fewer broods per season, larger clutches, and higher adult and juvenile return rates. Our results suggest that Savannah Sparrows that breed in high-elevation habitats have adopted a low fecundity, high survival life history strategy that enables their persistence in these challenging environments. 相似文献
17.
Links between parental life histories of wild salmon and the telomere lengths of their offspring 下载免费PDF全文
Darryl McLennan John D. Armstrong David C. Stewart Simon McKelvey Winnie Boner Pat Monaghan Neil B. Metcalfe 《Molecular ecology》2018,27(3):804-814
The importance of parental contributions to offspring development and subsequent performance is self‐evident at a genomic level; however, parents can also affect offspring fitness by indirect genetic and environmental routes. The life history strategy that an individual adopts will be influenced by both genes and environment; and this may have important consequences for offspring. Recent research has linked telomere dynamics (i.e., telomere length and loss) in early life to future viability and longevity. Moreover, a number of studies have reported a heritable component to telomere length across a range of vertebrates, although the effects of other parental contribution pathways have been far less studied. Using wild Atlantic salmon with different parental life histories in an experimental split‐brood in vitro fertilization mating design and rearing the resulting families under standardized conditions, we show that there can be significant links between parental life history and offspring telomere length (studied at the embryo and fry stage). Maternal life history traits, in particular egg size, were most strongly related to offspring telomere length at the embryonic stage, but then became weaker through development. In contrast, paternal life history traits, such as the father's growth rate in early life, had a greater association in the later stages of offspring development. However, offspring telomere length was not significantly related to either maternal or paternal age at reproduction, nor to paternal sperm telomere length. This study demonstrates both the complexity and the importance of parental factors that can influence telomere length in early life. 相似文献
18.
19.
Martin TE Schwabl H 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1497):1663-1674
Embryonic development rates are reflected by the length of incubation period in birds, and these vary substantially among species within and among geographical regions. The incubation periods are consistently shorter in North America (Arizona study site) than in tropical (Venezuela) and subtropical (Argentina) South America based on the study of 83 passerine species in 17 clades. Parents, mothers in particular, may influence incubation periods and resulting offspring quality through proximate pathways, while variation in maternal strategies among species can result from selection by adult and offspring mortality. Parents of long-lived species, as is common in the tropics and subtropics, may be under selection to minimize costs to themselves during incubation. Indeed, time spent incubating is often lower in the tropical and subtropical species than the related north temperate species, causing cooler average egg temperatures in the southern regions. Decreased egg temperatures result in longer incubation periods and reflect a cost imposed on offspring by parents because energy cost to the embryo and risk of offspring predation are both increased. Mothers may adjust egg size and constituents as a means to partially offset such costs. For example, reduced androgen concentrations in egg yolks may slow development rates, but may enhance offspring quality through physiological trade-offs that may be particularly beneficial in longer-lived species, as in the tropics and subtropics. We provide initial data to show that yolks of tropical birds contain substantially lower concentrations of growth-promoting androgens than north temperate relatives. Thus, maternal (and parental) effects on embryonic development rates may include contrasting and complementary proximate influences on offspring quality and deserve further field study among species. 相似文献
20.
Robert J. Quinlan 《Evolutionary anthropology》2008,17(5):227-238
Stable mating relationships are widespread in our species, with important economic, social, and reproductive implications.1 Pair‐bonds are part of the unique human mosaic, including very large brains, childhood, concealed ovulation, sexual intercourse in private, cultural symbols, and complex social groups. Yet we understand relatively little about the evolution of human pairing, its functions, and consequences for human diversity. We can define pair‐bonds as the long‐term affiliation, including a sexual relationship, between two individuals. The important point is that the union, whether monogamous or polygamous, is relatively enduring. Recent debate about human pair‐bonds highlights apparently conflicting hypotheses: Are pair‐bonds the evolutionary consequence of male mating competition2,3 or are they an adaptation for paternal provisioning?4,5 Unfortunately, a simple answer seems unlikely. The evidence indicates selective pressures from both mating competition and provisioning needs, suggesting different benefits of pair‐bonds in different contexts. Whether a bond emphasizes mating or parenting effort may depend on environmental cues. Childhood experience evidently affects pair‐bond development, suggesting further adaptive design for flexible life‐history strategies. © 2008 Wiley‐Liss, Inc. 相似文献