首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Delineation of brain tumor margins during surgery is critical to maximize tumor removal while preserving normal brain tissue to obtain optimal clinical outcomes. Although various imaging methods have been developed, they have limitations to be used in clinical practice. We developed a high‐speed cellular imaging method by using clinically compatible moxifloxacin and confocal microscopy for sensitive brain tumor detection and delineation. Moxifloxacin is a Food and Drug Administration (FDA) approved antibiotic and was used as a cell labeling agent through topical administration. Its strong fluorescence at short visible excitation wavelengths allowed video‐rate cellular imaging. Moxifloxacin‐based confocal microscopy (MBCM) was characterized in normal mouse brain specimens and visualized their cytoarchitecture clearly. Then, MBCM was applied to both brain tumor murine models and two malignant human brain tumors of glioblastoma and metastatic cancer. MBCM detected tumors in all the specimens by visualizing dense and irregular cell distributions, and tumor margins were easily delineated based on the cytoarchitecture. An image analysis method was developed for automated detection and delineation. MBCM demonstrated sensitive delineation of brain tumors through cytoarchitecture visualization and would have potentials for human applications, such as a surgery‐guiding method for tumor removal.   相似文献   

2.
Intraoperative neurosurgical diagnosis of brain tumor determines the success rate of patients' prognoses. We firstly proposed a novel approach based on an optical method to distinguish the site of the tumor functionally. The promoted technique is non‐invasive, non‐radioactive, dye‐free, and potential of real‐time monitoring, which is still not available nowadays by using other techniques. The method could be applied to neuroimage guiding system for precision surgery of brain. Further details can be found in the article by Xin‐Rui Liu, Tien‐Yu Hsiao, Yun‐Qian, et al. ( e201900200 ).

  相似文献   


3.
An optical fan was demonstrated to screen leukemia cells from the blood sample at the single‐cell level in a noninvasive and noncontact manner. Further details can be found in the article by Xiaoshuai Liu, Yuchao Li, Xiaohao Xu, Yao Zhang, Baojun Li ( e201900155 ).

  相似文献   


4.
Hyperspectral scanning laser optical tomography is developed to provide spectrally resolved volume data sets with high spectral resolution for large mesoscopic samples. It can be used to resolve largely overlapping fluorophores, as demonstrated by the 3D fluorescence hyperspectral reconstruction of a dual‐labelled mouse thymus gland sample and to distinguish between signals from autofluorescence of diseased and normal tissue without prior knowledge. Further details can be found in the article by Lingling Chen, Guiye Li, Li Tang, et al. ( e201800221 ).

  相似文献   


5.
A fast polarization‐resolved second harmonic generation microscope is implemented to map collagen orientation in thick and deforming tissues during mechanical assays. This system is based on line‐to‐line switching of the laser polarization using an electro‐optical modulator and works in epi‐detection geometry. After proper calibration, it successfully highlights the collagen dynamic alignment along the traction direction in ex vivo murine skin dermis. Further details can be found in the article by Guillaume Ducourthial, Jean‐Sébastien Affagard, Margaux Schmeltz, et al. ( e201800336 ).

  相似文献   


6.
Successful therapy of twin‐to‐twin transfusion syndrome requires accurate imaging to guide laser photocoagulation of the anastomosing placental vessels. Photoacoustic (PA) imaging is an alternative imaging method that provides contrast for hemoglobin, and in this study, it was used to visualize chorionic superficial and subsurface vasculature in human placentas. The strong potential of PA imaging to guide minimally invasive fetal therapies was demonstrated. Further details can be found in the article by Efthymios Maneas, Rosalind Aughwane, Nam Huynh, et al. ( e201900167 ).

  相似文献   


7.
If gold nanorods are used as photoabsorbers, then light in the near infrared tissue window can generate a strong photothermal effect. In this issue, C. Paviolo et al. show that near infrared light can be used to evoke a calcium response in neuronal cells treated with gold nanorods. This suggests new opportunities for peripheral nerve regeneration and infrared neural stimulation. (Picture: C. Paviolo et al., pp. 761–765 in this issue)  相似文献   

8.
Optimized light delivery allows for single shot whole organ optoacoustic imaging. The authors present an optimized illumination concept for volumetric tomography that utilizes 3D printing in combination with custom‐made optical fiber illumination. The new approach showed a clear advantage over conventional, single‐sided illumination strategies by eliminating the need to correct for illumination variances and resulting in enhancement of the effective field of view, greater penetration depth and significant improvements in the overall image quality. Further details can be found in the article by Benedict Mc Larney, Johannes Rebling, Zhenyue Chen, et al. ( e201800387 )

  相似文献   


9.
10.
This study proposed a Sparse‐Graph Manifold Learning (SGML) method to balance the sparseness and morphology preserving for bioluminescence tomography reconstruction. It inherits the benefits of non‐convex sparsity constraint and dynamic Laplacian graph model. The results of numerical simulations and in vivo experiments demonstrate that the proposed method yields accurate and robust results in terms of tumor spatial location and morphology recovery. Further details can be found in the article by Hongbo Guo, Ling Gao, Jingjing Yu, et al. ( e201960218 )

  相似文献   


11.
12.
Interstitial photodynamic therapy (iPDT) planning aims to minimize the damage to organs‐at‐risk (OAR), while maximizing dose coverage of the tumor by optimizing the number of light diffusers, their positions and their allocated powers. The cover describes a new degree of freedom to optimize upon in iPDT, namely diffusers' power emission profiles. The tool generates manufacturable customized emission profiles that lead to better conformation to brain tumor shapes, resulting in 50% further minimization of damage to OAR. Background image is taken from the National Cancer Institute (NCI). Further details can be found in the article by Abdul‐Amir Yassine, Lothar Lilge, and Vaughn Betz ( e201800153 ).

  相似文献   


13.
iSERS (SERS=surface‐enhanced Raman scattering) microscopy is an emerging Raman‐based staining technique for the selective localization of target proteins on cells and tissues using antibody‐ SERS nanotag conjugates. In this contribution we demonstrate the feasibility of iSERS for imaging of programmed cell death‐ligand 1 (PD‐L1), an important predictive biomarker, on single SkBr‐3 breast cancer cells. Further details can be found in the article by Elzbieta Stepula, Matthias König, Xin‐Ping Wang, et al. ( e201960034 ).

  相似文献   


14.
Two‐photon microscopy is the tool of choice for fluorescence imaging of deep tissues with high resolution, but can be limited in three‐dimensional acquisition speed and penetration depth. In this work, these issues are addressed by using an acoustic optofluidic lens capable of ultrafast beam shaping on a pixel basis. Driving the lens with different phase profiles enables high‐speed volumetric imaging, or enhanced signal‐to‐background for deeper penetration. Further details can be found in the article by Simonluca Piazza et al. ( e201700050 )

  相似文献   


15.
Hyperspectral imaging microscopy of rat lung cryoslices can be used to identify individual pulmonary microvascular endothelial cells (PMVECs) in the presence of a high lung autofluorescence of the same peak fluorescence emission wavelength. PMVECs expressing green fluorescent protein are shown in green, lung autofluorescence is shown in red, and nuclei are shown in blue. A plot of the spectral library used for linear unmixing is also shown. (Picture: S. Leavesley et al., pp. 67–84 in this issue)  相似文献   

16.
Raman spectroscopy has been used in this study to obtain biochemical fingerprint patterns of collagen fibers in native aortic heart valve tissues. Using this non‐contact screening tool, we were able to monitor the increasing damage of collagen fibers due to enzymatic treatment or cryopreservation. (Picture: M. Votteler et al., pp. 47–56 in this issue)  相似文献   

17.
Sensitive Escherichia coli detection based on a T4 bacteriophageimmobilized multimode microfiber is proposed and demonstrated in this article. Different modes are excited and guided in the microfiber as evanescent field that can interact with surrounding E. coli directly. The change of E. coli concentration and corresponding binding of E. coli on microfiber surface will lead to the shift of optical spectrum, which can be exploited for the application of biosensing. Further details can be found in the article by Yanpeng Li, Hui Ma, Lin Gan, et al. ( e201800012 ).

  相似文献   


18.
A novel capsule optoacoustic endoscopy (COE) system is built which provides high‐quality 360‐degree images of the entire lumen, specifically designed for typical dimensions of human esophagus. The pill‐shaped encapsulated probe consists of a novel and highly sensitive ultrasound transducer fitted with an integrated miniature pre‐amplifier. For the first time, ex vivo volumetric vascular network images to a depth of 2 mm in swine esophageal lining using COE are demonstrated. Further details can be found in the article by Hailong He, Antonios Stylogiannis, Parastoo Afshari, et al. ( e201800439 )

  相似文献   


19.
An ultrafast time‐stretch imaging technique for edge detection is demonstrated. The edge detection based on the optical directional derivative is realized by using differential detection. Since the edge detection is implemented in the physical layer, the computation complexity in the back‐end digital signal processing is very low. The blood red cells and cancer cells can be easily identified by distinguishing the edges. Further details can be found in the article by Bo Dai, LuHe, Lulu Zheng, Yongfeng Fu et al. ( e201800044 ).

  相似文献   


20.
A STED‐FLIM system is developed to observe the changes of fluorescence lifetime. The pictures show increased lifetime of fluorescent microspheres samples with laser illumination time in both confocal and STED imaging modes. Due to the saturation power of fluorophores is correlated with fluorescence lifetime, the lifetime increase is beneficial for the reduction of the saturation power, indicating the same imaging resolution can be achieved in a lower depletion power. Further details can be found in the article by Lu‐Wei Wang, Yue Chen, Wei Yan, et al. ( e201800315 ).

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号