首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ning Liu  Ping Yang 《Luminescence》2014,29(6):566-572
Hybrid SiO2‐coated CdTe/CdSe quantum dots (QDs) were prepared using CdTe/CdSe QDs prepared by hydrothermal synthesis. A CdSe interlayer made CdTe/CdSe cores with unique type II heterostructures. The hybrid SiO2‐coated CdTe/CdSe QDs revealed excellent photoluminescence (PL) properties compared with hybrid SiO2‐coated CdTe QDs. Because of the existence of spatial separations of carriers in the type II CdTe/CdSe core/shell QDs, the hybrid QDs had a relatively extended PL lifetime and high stability in phosphate‐buffered saline buffer solutions. This is ascribed to the unique components and stable surface state of hybrid SiO2‐coated CdTe/CdSe QDs. During the stabilization test in phosphate‐buffered saline buffer solutions, both static and dynamic quenching occurred. The quenching mechanism of the hybrid QDs was not suited with the Stern–Volmer equation. However, the relative stable surface of CdTe/CdSe QDs resulted in lower degradation and relative high PL quantum yields compared with hybrid SiO2‐coated CdTe QDs. As a result, hybrid SiO2‐coated CdTe/CdSe QDs can be used in bioapplications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Ning Liu  Ping Yang 《Luminescence》2013,28(4):542-550
Novel hybrid SiO2‐coated CdTe quantum dots (QDs) were created using CdTe QDs coated with a hybrid SiO2 shell containing Cd2+ ions and a sulfur source via a sol–gel process in aqueous solution. Aqueous CdTe QDs with tunable emitting color created through a reaction between cadmium chloride and sodium hydrogen telluride was used as cores for the preparation of hybrid SiO2‐coated CdTe QDs. In our experiments we found that the surface state of the cores and preparation conditions that affect the formation of the hybrid SiO2 shell also greatly affect photoluminescence of the hybrid SiO2‐coated CdTe QDs. The generation of CdS‐like clusters in the vicinity of the CdTe QDs, caused the quantum size effect of the QDs to be greatly reduced, which changes photoluminescence properties of the hybrid QDs fundamentally. Namely, the novel hybrid SiO2 shell played an important role in generating a series of specific optical properties. In addition, the novel hybrid SiO2 shell can be created if no CdTe QD is added. In order to gain an insight into the inter structure of the hybrid shell, we characterized the hybrid SiO2‐coated CdTe QDs using X‐ray diffraction analysis and discuss the formation mechanism of such a hybrid structure. This work is significant because the novel hybrid SiO2‐coated CdTe QDs with its excellent properties can be used in many applications, such as biolabeling and optoelectronic devices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Red‐emitting Li2Sr1‐3x/2EuxSiO4 0≤x≤0.5) phosphors were synthesized at 900°C in air by a solid‐state reaction. The synthesized phosphors were characterized by X‐ray powder diffraction, photoluminescence (PL) excitation (PLE) and PL spectra. The results from the PLE spectra suggest that the strong 394 nm excitation peak associated with the 5L6 state of Eu3+ ions is of significance for near ultraviolet pumped white light‐emitting diodes and solid‐state lighting. It is also noted that the position of the charge transfer state of Eu3+ ions shifts towards the higher energy side (blue shift) by increasing the content of Eu3+ ions. The predominant emissions of Eu3+ ions under 394 nm excitation are observed at 580, 593, 614, 656 and 708 nm, which are attributed to the 5D07FJ (J = 0, 1, 2, 3 and 4), respectively. The PL results reveal that the optimal content of the red‐emitting Li2Sr1‐3x/2EuxSiO4 phosphors is x = 0.475. Simulation of the white light excited by 394 nm near ultraviolet light has also been carried out for its potential white light‐emitting diode applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The BaB2O4:Eu3+ nano/microphosphors with sphere‐, rod‐, and granular‐like morphologies were successfully obtained by a two‐step method using Ba‐B‐O:Eu3+ as the precursor. The structure, morphology and photoluminescent properties of the products were characterized by Fourier transfer infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), thermogravimetry‐differential thermal analysis (TG‐DTA), scanning electron microscopy (SEM) and photoluminescence (PL). The formation mechanisms of Ba‐B‐O:Eu3+ and BaB2O4:Eu3+ were proposed. The results show that the BaB2O4:Eu3+ could retain the original morphologies of their respective precursors largely. The BaB2O4:Eu3+ prepared by this two‐step method exhibited better morphology, smaller particle size and better crystallinity than when prepared by a solid‐state method. The granular‐like BaB2O4:Eu3+ red phosphor prepared by this two‐step method exhibited stronger PL intensity and better red color purity than when prepared by a solid‐state method.  相似文献   

5.
Novel, water‐soluble CdTe quantum dots (QDs) capped with β‐cyclodextrin (β‐CD) and ~ 4.0 nm in diameter were synthesized in aqueous solution, and characterized using transmission electron microscopy (TEM). A fluorescence‐sensing system based on the photoinduced electron transfer (PET) of (mono‐6‐thio‐β‐CD)–CdTe QDs was then designed to measure the interaction of phenothiazine dyes [methylene blue (MB) and methylene green (MG)] with herring sperm DNA (hsDNA). This fluorescence‐sensing system was based on a fluorescence “OFF–ON” mode. First, MB/MG adsorbed on the surface of (mono‐6‐thio‐β‐CD)–CdTe QDs effectively quenches the fluorescence of (mono‐6‐thio‐β‐CD)–CdTe QDs through PET. Then, addition of hsDNA restores the fluorescence intensity of (mono‐6‐thio‐β‐CD)–CdTe QDs, because hsDNA can bind with MB/MG and remove it from the as‐prepared (mono‐6‐thio‐β‐CD)–CdTe QDs. In addition, detailed reaction mechanisms of the (mono‐6‐thio‐β‐CD)–CdTe QDs–MB/MG–hsDNA solution system were studied using optical methods, by comparison with the TGA–CdTe QDs–MB/MG–hsDNA solution system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Alloy CdTe1‐xSex quantum dots (QDs) have been fabricated by an organic route using Cd, Te and Se precursors in a mixture of trioctylamine and octadecylphosphonic acid at 280 °C. The variation of photoluminescence (PL) peak wavelength of the CdTe1‐xSex QDs compared with CdTe QDs confirmed the formation of an alloy structure. The Se component drastically affected the stability of CdTe1‐xSex QDs. A Cd0.5Zn0.5S shell coating on CdTe1‐xSex cores was carried out using oleic acid as a capping agent. CdTe1‐xSex/Cd0.5Zn0.5S core/shell QDs revealed dark red PL while a yellow PL peak was observed for the CdTe1‐xSex cores. The PL efficiency of the core/shell QDs was drastically increased (less than 1% for the cores and up to 65% for the core/shell QDs). The stability of QDs in various buffer solutions was investigated. Core/shell QDs can be used for biological applications because of their high stability, tunable PL and high PL efficiency. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A novel assay for oxytetracycline hydrochloride (OTC) based on fluorescence quenching was developed from the interaction between functionalized cadmium telluride quantum dots (CdTe QDs) and OTC. Optimum conditions for the detection of OTC were found after investigating all factors. Under optimum conditions, luminescence of CdTe nanocrystals (λex = 365 nm, λem = 562 nm) was quenched by OTC in a concentration‐dependent manner best described by a modified Stern‐Volmer type equation. Good linearity was obtained with a regression coefficient of 0.9999 in the range of 1.34 ~ 13.4 x 10‐5 mol/L and a limit of detection of 3.08 x 10‐7 mol/L. In addition, the quenching mechanism was also established. The results imply that the close proximity of OTC‐CdTe was driven by electrostatic attraction and the resulting effective electron transfer from OTC to QDs could be responsible for fluorescence quenching of CdTe‐QDs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A new Eu3+‐substituted CsK2Y[VO4]2 glaserite‐type orthovanadate phosphor was synthesized by the conventional high temperature solid‐state reaction method. The phase purity was confirmed by powder X‐ray diffraction study and it reveals that all the compositions crystallize in the hexagonal structure. The morphology and elemental composition were measured by FE‐SEM with Energy Dispersive Analysis Of X Rays (EDAX). The band gap is determined by diffuse reflectance spectra. The self‐activated luminescence of the host and Eu3+‐substituted luminescence behaviours were studied in detail by photoluminescence spectra. The host CsK2Y[VO4]2 shows green emission, whereas the Eu3+‐substituted compositions show red emission. Effect of Eu3+ concentrations on the photoluminescence behaviour were also been studied. The Eu3+‐doped samples show not only several sharp emission lines but also a broad emission band due to presence of the [VO4]3? in the host, which clearly indicates that there is incomplete energy transfer from (VO4) charge transfer band to Eu3+. The life time of the phosphors also been studied. The Commission Internationale de l'Eclairage (CIE) chromaticity colour coordinates were calculated and it is very much closer to the National Television Standard Committee (NTSC) standards. These investigations evidently reveal that the self‐activated and Eu3+‐activated phosphors show a great potential applications as a red phosphor for solid‐state lighting includes white light‐emitting diodes (wLEDs).  相似文献   

9.
Peng Du  Jae Su Yu 《Luminescence》2017,32(8):1504-1510
A series of Sm3+‐activated Sr3La(VO4)3 phosphors were synthesized by a facile sol‐gel method. X‐ray diffraction patterns and photoluminescence (PL)/cathodoluminescence (CL) spectra as well as PL decay curves were employed to characterize the obtained samples. Upon 402 nm light excitation, the characteristic emissions of Sm3+ ions corresponding to 4G5/26HJ transitions were observed in all the as‐prepared products. The PL emission intensity was increased with increase in Sm3+ ion concentration, while concentration quenching occurred when the doping concentration was over 4 mol%. The non‐radiative energy transfer mechanism for concentration quenching of Sm3+ ions was dominated by dipole–dipole interaction and the critical distance was around 21.59 Å. Furthermore, temperature‐dependent PL emission spectra revealed that the obtained phosphors possessed good thermal stability with an activation energy of 0.19 eV. In addition, the CL spectra of the samples were almost the same as the PL spectra, and the CL emission intensity showed a tendency to increase with increase in accelerating voltage and filament current. These results suggest that the Sm3+‐activated Sr3La(VO4)3 phosphors with good color coordinates, high color purity and superior thermal stability may be a potential candidate for applications in white light‐emitting diodes and field‐emission displays as red‐emitting phosphors.  相似文献   

10.
CdTe nanocrystals (NCs) were fabricated through an organic synthesis. The growth and properties of CdTe NCs depended strongly on the preparation conditions. In a reaction system of octadecene and tetradecylphosphonic acid (TDPA), the growth was slow. CdTe NCs with cubic‐like morphology were created in trioctylamine (TOA) using octadecylphosphonic acid (ODPA)‐CdO or TDPA‐CdO as precursors. The TOA and ODPA system gives rise to NCs with high photoluminescence (PL) efficiencies (12%). A CdxZn1‐xS shell coating on the CdTe core, gave rise to tunable dark red PL (630–670 nm). The morphology and PL properties of the CdTe cores were drastically affected by shell coating and this determined the properties of CdTe/CdxZn1‐xS NCs. Small CdTe NCs were easily coated with CdxZn1‐xS shells. The resulting core/shell NCs revealed a spherical morphology. However, shell growth became slow when large CdTe cores were used. This is ascribed to the cores with a cubic‐like morphology. CdS interlayer plays an important role for the formation of the CdTe/CdxZn1‐xS NCs because the experimental result indicated it is difficult to coat CdTe NCs with a ZnS shell. The core/shell NCs benefited from a CdxZn1‐xS composite shell because CdTe/CdS NCs created via a similar procedure revealed a low PL efficiency. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Mn2+‐doped CdTe quantum dots (QDs) were synthesized directly via a facile surface doping strategy in aqueous solution. The best optical property emerged when the added amount of Mn2+ was 5% compared to Cd2+ in the CdTe nanoparticles and the reaction temperature was 60 °C. The fluorescence and magnetic properties of the QDs were studied. The as‐prepared Mn2+‐doped CdTe QDs have high quantum yield (48.13%) and a narrow distribution with an average diameter of 3.7 nm. The utility of biological imaging was also studied. Depending on the high quantum yield, cells in culture were illuminated and made more distinct from each other compared to results obtained with normal QDs. They also have a prominent longitudinal relaxivity value (r1 = 4.2 mM?1s?1), which could indicate that the Mn2+‐doped CdTe QDs can be used as a potential multimodal agent for fluorescence and magnetic resonance imaging. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Eu3+‐activated MAl(SO4)2Br phosphors (where M = Mg or Sr) are successfully prepared using a wet chemical reaction technique. The samples are characterized by X‐ray diffraction (XRD) and photoluminescence (PL) spectroscopies. The XRD pattern revealed that both the samples are microcrystalline in nature. PL of Eu3+‐doped SrAl(SO4)2Br and MgAl(SO4)2Br phosphors exhibited characteristic red emission coming from the 5D07F2 (616 nm) electron transition, when excited by 396 nm wavelength of light. The maximum intensity of luminescence was observed at a concentration of 1 mol% Eu3+. The intensity of the electric dipole transition at 616 nm is greater than that of the magnetic dipole transition at 594 nm. The results showed that MAl(SO4)2Br:Eu3+, (M = Mg, Sr) phosphors have potential application in near‐UV light‐emitting diodes as efficient red‐emitting phosphor. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Pure and Li+‐doped Alq3 complexes were synthesized by simple precipitation method at room temperature, maintaining the stoichiometric ratio. These complexes were characterized by X‐ray diffraction, ultraviolet‐visible absorption and Fourier transform infrared and photoluminescence (PL) spectra. X‐ray diffraction analysis reveals the crystalline nature of the synthesized complexes, while Fourier transform infrared spectroscopy confirm the molecular structure, the completion of quinoline ring formation and presence of quinoline structure in the metal complex. Ultraviolet‐visible and PL spectra revealed that Li+ activated Alq3 complexes exhibit the highest intensity in comparison to pure Alq3 phosphor. Thus, Li+ enhances PL emission intensity when doped into Alq3 phosphor. The excitation spectra lie in the range of 383–456 nm. All the synthesized complexes other than Liq give green emission, while Liq gives blue emission with enhanced intensity. Thus, he synthesized phosphors are the best suitable candidates for green‐ and blue‐emitting organic light emitting diode, PL liquid‐crystal display and solid‐state lighting applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Two synthesis routes, solid‐state reaction and precipitation reaction, were employed to prepare BaSiO3:Eu2+ phosphors in this study. Discrepancies in the luminescence green emission at 505 nm for the solid‐state reaction method sample and in the yellow emission at 570 nm for the sample prepared by the precipitation reaction method, were observed respectively. A detail investigation about the discrepant luminescence of BaSiO3:Eu2+ phosphors was performed by evaluation of X‐ray diffraction (XRD), photoluminescence (PL)/photoluminescence excitation (PLE), decay time and thermal quenching properties. The results showed that the yellow emission was generated from the BaSiO3:Eu2+ phosphor, while the green emission was ascribed to a small amount of Ba2SiO4:Eu2+ compound that was present in the solid‐state reaction sample. This work clarifies the luminescence properties of Eu2+ ions in BaSiO3 and Ba2SiO4 hosts.  相似文献   

15.
A series of Ce3+‐activated blue‐emitting phosphors BaY2Si3O10 (BYSO) was designed and synthesized by a conventional solid‐state method. Upon ultraviolet light (250–370 nm) excitation, the obtained phosphors showed an intense blue emission band centered at 400–427 nm depending on doping concentration, and corresponding to the 5d→4f transition of Ce3+. The effects of doping concentration on crystal structure, emitting color, photoluminescence and photoluminescence excitation spectra, as well as the concentration quenching mechanism were studied in detail. The optimal doping concentration of Ce3+ in this phosphor was demonstrated to be about 0.75% and the concentration quenching mechanism can be ascribed to electric dipole–dipole interactions with a critical distance of ~38 Å. These fine luminescence properties indicate that BYSO:Ce3+ may be a potential blue phosphor for full‐color ultra‐violet (UV) white light emitting diodes (WLEDs).  相似文献   

16.
Electrogenerated chemiluminescence (ECL) of thiol‐capped CdTe quantum dots (QDs) in aqueous solution was greatly enhanced by PDDA‐protected graphene (P‐GR) film that were used for the sensitive detection of H2O2. When the potential was cycled between 0 and ?2.3 V, two ECL peaks were observed at ?1.1 (ECL‐1) and ?1.4 V (ECL‐2) in pH 11.0, 0.1 M phosphate buffer solution (PBS), respectively. The electron‐transfer reaction between individual electrochemically‐reduced CdTe nanocrystal species and oxidant coreactants (H2O2 or reduced dissolved oxygen) led to the production of ECL‐1. While mass nanocrystals packed densely in the film were reduced electrochemically, assembly of reduced nanocrystal species reacted with coreactants to produce an ECL‐2 signal. ECL‐1 showed higher sensitivity for the detection of H2O2 concentrations than that of ECL‐2. Further, P‐GR film not only enhanced ECL intensity of CdTe QDs but also decreased its onset potential. Thus, a novel CdTe QDs ECL sensor was developed for sensing H2O2. Light intensity was linearly proportional to the concentration of H2O2 between 1.0 × 10?5 and 2.0 x 10‐7 mol L?1 with a detection limit of 9.8 x 10?8 mol L?1. The P‐GR thin‐film modified glassy carbon electrode (GCE) displayed acceptable reproducibility and long‐term stability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A novel fluorescence assay system for glucose was developed with thioglycollic acid (TGA)‐capped CdTe quantum dots (QDs) as probes. The luminescence quantum yield of the TGA‐capped CdTe QDs was highly sensitive to H2O2 and pH. In the presence of glucose oxidase, glucose is oxidized to yield, gluconic acid and H2O2. H2O2 and H+ (dissociated from gluconic acid) intensively quenched the fluorescence of QDs. The experimental results showed that the quenched fluorescence was proportional to the glucose concentration within the range of 0.01–5.0 mm under optimized experimental conditions. Compared with most of the existing methods, this newly developed system possesses many advantages, including simplicity, low cost, high flexibility, and good sensitivity. Furthermore, no complicated chemical modification of QDs and enzyme immobilization was needed in this system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The novel red‐emitting phosphors KxSr1?2xMoO4:Pr3+x (0.00 ≤ x ≤ 0.04) were prepared by solid‐state reaction. The crystallization and particle sizes of samples were investigated by powder X‐ray diffraction (XRD) and transmission electron microscopy (TEM). TEM images were in good agreement with the theoretical calculation data from the XRD patterns. Photoluminescence analysis indicated that there were three excitation peaks under 430–500 nm, and all samples showed the intensely red emission at 648 nm corresponding to the 3P03F2 transition of Pr3+. The concentrations of doping ions, temperature and polyethylene glycol in the phosphor system can significantly influence the intensity of the red emission. The photoluminescence spectral intensity reached its maximum at x = 0.02. The results showed that the investigated phosphor is a potential red phosphor for white light‐emitting diodes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, we developed a novel simple fluorescence resonance‐energy transfer (FRET) system between two‐color CdTe quantum dots (QDs) assisted by cetyltrimethylammonium bromide (CTAB). Mercaptopropionic (MPA)‐capped CdTe QDs serving as both donors and acceptors were successfully synthesized by changing the refluxing time in aqueous solution. CTAB micelles formed in water and minimized the distance between the donors and acceptors significantly by electrostatic interactions, improving FRET efficiency. Several factors that affected the fluorescence spectra of the FRET system were investigated. The prepared FRET system was feasible as an effective fluorescent probe to detect Hg(II) in aqueous solution. At pH 7.0, a linear relationship between the quenched fluorescence intensity of orange‐emitting acceptors (QDs(A)) and Hg(II) concentration was acquired in the range 5–250 nmol/L with a detection limit of 1.95 nmol/L. The developed method showed excellent analytical performance for Hg(II) with high sensitivity and acceptable selectivity, reproducibility and stability. This finding indicated that the method has a promising potential application for environmental monitoring. This study demonstrated the great promise of QDs for expedient, low‐cost and high‐sensitivity detection of Hg(II).  相似文献   

20.
A flow injection chemiluminescence (FI–CL) method was developed for the determination of cyanide (CN) based on the recovered CL signal by Cu2+ inhibiting a glutathione (GSH)‐capped CdTe quantum dot (QD) and hydrogen peroxide system. In an alkaline medium, strong CL signals were observed from the reaction of CdTe QDs and H2O2, and addition of Cu2+ could cause significant CL inhibition of the CdTe QDs–H2O2 system. In the presence of CN, Cu2+ can be removed from the surface of CdTe QDs via the formation of particularly stable [Cu(CN)n](n‐1)– species, and the CL signal of the CdTe QDs–H2O2 system was efficiently recovered. Thus, the CL signals of CdTe QDs–H2O2 system were turned off and turned on by the addition of Cu2+ and CN, respectively. Further, the results showed that among the tested ions, only CN could recover the CL signal, which suggested that the CdTe QDs–H2O2–Cu2+ CL system had highly selectivity for CN. Under optimum conditions, the CL intensity and the concentration of CN show a good linear relationship in the range 0.0–650.0 ng/mL (R2 = 0.9996). The limit of detection for CN was 6.0 ng/mL (3σ). This method has been applied to detect CN in river water and industrial wastewater with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号