首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Collin H  Fumagalli L 《Molecular ecology》2011,20(21):4490-4502
Natural selection drives local adaptation, potentially even at small temporal and spatial scales. As a result, adaptive genetic and phenotypic divergence can occur among populations living in different habitats. We investigated patterns of differentiation between contrasting lake and stream habitats in the cyprinid fish European minnow (Phoxinus phoxinus) at both the morphological and genomic levels using geometric morphometrics and AFLP markers, respectively. We also used a spatial correlative approach to identify AFLP loci associated with environmental variables representing potential selective forces responsible for adaptation to divergent habitats. Our results identified different morphologies between lakes and streams, with lake fish presenting a deeper body and caudal peduncle compared to stream fish. Body shape variation conformed to a priori predictions concerning biomechanics and swimming performance in lakes vs. streams. Moreover, morphological differentiation was found to be associated with several environmental variables, which could impose selection on body and caudal peduncle shape. We found adaptive genetic divergence between these contrasting habitats in the form of 'outlier' loci (2.9%) whose genetic divergence exceeded neutral expectations. We also detected additional loci (6.6%) not associated with habitat type (lake vs. stream), but contributing to genetic divergence between populations. Specific environmental variables related to trophic dynamics, landscape topography and geography were associated with several neutral and outlier loci. These results provide new insights into the morphological divergence and genetic basis of adaptation to differentiated habitats.  相似文献   

2.
Minnows of the genus Phoxinus are promising candidates to investigate adaptive divergence, as they inhabit both still and running waters of a variety of altitudes and climatic zones in Europe. We used landmark‐based geometric morphometric methods to quantify the level of morphological variability in Phoxinus populations from streams and lakes of Northern Italy and the Danube basin. We analyzed body shape differences of populations in the dorsal, lateral, and ventral planes, using a large array of landmarks and semilandmarks. As the species identification of Phoxinus on morphological characters is ambiguous, we used two mitochondrial genes to determine the genetic background of the samples and to ensure we are comparing homogenous groups. We have found significant body shape differences between habitats: Minnow populations inhabiting streams had a deeper body and caudal peduncle and more laterally inserted pectoral fins than minnows inhabiting lakes. We have also found significant body shape differences between genetic groups: Italian minnows had deeper bodies, deeper and shorter caudal peduncles, and a shorter and wider gape than both groups from the Danube. Our results show that the morphology of Phoxinus is highly influenced by habitat and that body shape variation between habitats was within the same range as between genetic groups. These morphological differences are possibly linked to different modes of swimming and foraging in the respective habitats and are likely results of phenotypic plasticity. However, differences in shape and interlandmark distances between the groups suggest that some (though few) morphometric characters might be useful for separating Phoxinus species.  相似文献   

3.
Disruptive selection is a process that can result in multiple subgroups within a population, which is referred to as diversification. Foraging‐related diversification has been described in many taxa, but many questions remain about the contribution of such diversification to reproductive isolation and potentially sympatric speciation. Here, we use stable isotope analysis of diet and morphological analysis of body shape to examine phenotypic divergence between littoral and pelagic foraging ecomorphs in a population of pumpkinseed sunfish (Lepomis gibbosus). We then examine reproductive isolation between ecomorphs by comparing the isotopic compositions of nesting males to eggs from their nests (a proxy for maternal diet) and use nine microsatellite loci to examine genetic divergence between ecomorphs. Our data support the presence of distinct foraging ecomorphs in this population and indicate that there is significant positive assortative mating based on diet. We did not find evidence of genetic divergence between ecomorphs, however, indicating that isolation is either relatively recent or is not strong enough to result in genetic divergence at the microsatellite loci. Based on our findings, pumpkinseed sunfish represent a system in which to further explore the mechanisms by which natural and sexual selection contribute to diversification, prior to the occurrence of sympatric speciation.  相似文献   

4.
The structure of body size and shape divergence among populations of Poecilia vivipara inhabiting quaternary lagoons in South-eastern Brazil was studied. This species is abundant throughout an environmental gradient formed by water salinity differences. The salinity gradient influences the habitat structure (presence of macrophytes) and the fish community (presence of large predators). Size and shape variation within and among populations was quantified by geometric morphometrics and analysed by indirect and direct gradient ordinations, using salinity and geography as a framework. Morphological divergence was associated with the salinity gradient. The evolutionary allometries observed were independent of within-group static allometries. Sexually dimorphic patterns were observed in size variation and within-population allometries. Specimens from freshwater (higher predation) sites presented smaller sizes, relatively longer caudal regions, lower anterior regions and a ventrally displaced eye. These features are consistent with an ecomorphological paradigm for aquatic organisms from populations subject to intense predation. A process of directional selection is postulated as the most likely force driving diversification among P. vivipara populations.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 799–812.  相似文献   

5.
Neutral and selective processes can drive repeated patterns of evolution in different groups of populations experiencing similar ecological gradients. In this paper, we used a combination of nuclear and mitochondrial DNA markers, as well as geometric morphometrics, to investigate repeated patterns of morphological and genetic divergence of European minnows in two mountain ranges: the Pyrenees and the Alps. European minnows (Phoxinus phoxinus) are cyprinid fish inhabiting most freshwater bodies in Europe, including those in different mountain ranges that could act as major geographical barriers to gene flow. We explored patterns of P. phoxinus phenotypic and genetic diversification along a gradient of altitude common to the two mountain ranges, and tested for isolation by distance (IBD), isolation by environment (IBE) and isolation by adaptation (IBA). The results indicated that populations from the Pyrenees and the Alps belong to two well differentiated, reciprocally monophyletic mtDNA lineages. Substantial genetic differentiation due to geographical isolation within and between populations from the Pyrenees and the Alps was also found using rapidly evolving AFLPs markers (isolation by distance or IBD), as well as morphological differences between mountain ranges. Also, morphology varied strongly with elevation and so did genetic differentiation to a lower extent. Despite moderate evidence for IBE and IBA, and therefore of repeated evolution, substantial population heterogeneity was found at the genetic level, suggesting that selection and population specific genetic drift act in concert to affect genetic divergence.  相似文献   

6.
Morphological responses of a stream fish to water impoundment   总被引:1,自引:0,他引:1  
Water impoundment imposes fundamental changes on natural landscapes by transforming rivers into reservoirs. The dramatic shift in physical conditions accompanying the loss of flow creates novel ecological and evolutionary challenges for native species. In this study, we compared the body shape of Cyprinella venusta collected from eight pairs of river and reservoir sites across the Mobile River Basin (USA). Geometric morphometric analysis of the body shape showed that river populations differ from reservoir populations. Individuals inhabiting reservoirs are deep-bodied and have a smaller head, a more anterior dorsal fin, a shorter dorsal fin base and a more ventral position of the eye than C. venusta in streams. The direction of shape divergence within reservoir–river pairs was consistent among pairs of sites, and the shape of C. venusta in reservoirs is strongly correlated with reservoir size. These findings show that physical characteristics of reservoirs drive changes in the morphological attributes of native fish populations, indicating that water impoundment may be an important, yet largely unrecognized, evolutionary driver acting on aquatic biodiversity.  相似文献   

7.
Parallel phenotypic evolution occurs when independent populations evolve similar traits in response to similar selective regimes. However, populations inhabiting similar environments also frequently show some phenotypic differences that result from non‐parallel evolution. In this study, we quantified the relative importance of parallel evolution to similar foraging regimes and non‐parallel lake‐specific effects on morphological variation in European whitefish (Coregonus lavaretus). We found evidence for both lake‐specific morphological characteristics and parallel morphological divergence between whitefish specializing in feeding on profundal and littoral resources in three separate lakes. Foraging specialists expressed similar phenotypes in different lakes in both overall body shape and selected measured morphological traits. The morphology of the two whitefish specialists resembled that predicted from other fish species, supporting the conclusion of an adaptive significance of the observed morphological characteristics. Our results indicate that divergent natural selection resulting from foraging specialization is driving and/or maintaining the observed parallel morphological divergence. Whitefish in this study may represent an early stage of divergence towards the evolution of specialized morphs.  相似文献   

8.
Functional traits can covary to form “functional syndromes.” Describing and understanding functional syndromes is an important prerequisite for predicting the effects of organisms on ecosystem functioning. At the intraspecific level, functional syndromes have recently been described, but very little is known about their variability among populations and—if they vary—what the ecological and evolutionary drivers of this variation are. Here, we quantified and compared the variability in four functional traits (body mass, metabolic rate, excretion rate, and boldness), their covariations and the subsequent syndromes among thirteen populations of a common freshwater fish (the European minnow, Phoxinus phoxinus). We then tested whether functional traits and their covariations, as well as the subsequent syndromes, were underpinned by the phylogenetic relatedness among populations (historical effects) or the local environment (i.e., temperature and predation pressure), and whether adaptive (selection or plasticity) or nonadaptive (genetic drift) processes sustained among‐population variability. We found substantial among‐population variability in functional traits and trait covariations, and in the emerging syndromes. We further found that adaptive mechanisms (plasticity and/or selection) related to water temperature and predation pressure modulated the covariation between body mass and metabolic rate. Other trait covariations were more likely driven by genetic drift, suggesting that nonadaptive processes can also lead to substantial differences in trait covariations among populations. Overall, we concluded that functional syndromes are population‐specific, and that both adaptive and nonadaptive processes are shaping functional traits. Given the pivotal role of functional traits, differences in functional syndromes within species provide interesting perspectives regarding the role of intraspecific diversity for ecosystem functioning.  相似文献   

9.
Host–pathogen interactions are a major evolutionary force promoting local adaptation. Genes of the major histocompatibility complex (MHC) represent unique candidates to investigate evolutionary processes driving local adaptation to parasite communities. The present study aimed at identifying the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of European minnows (Phoxinus phoxinus). To this end, we isolated and genotyped exon 2 of two MHCIIB gene duplicates (DAB1 and DAB3) and 1′665 amplified fragment length polymorphism (AFLP) markers in nine populations, and characterized local bacterial communities by 16S rDNA barcoding using 454 amplicon sequencing. Both MHCIIB loci exhibited signs of historical balancing selection. Whereas genetic differentiation exceeded that of neutral markers at both loci, the populations' genetic diversities were positively correlated with local pathogen diversities only at DAB3. Overall, our results suggest pathogen‐mediated local adaptation in European minnows at both MHCIIB loci. While at DAB1 selection appears to favor different alleles among populations, this is only partially the case in DAB3, which appears to be locally adapted to pathogen communities in terms of genetic diversity. These results provide new insights into the importance of host–pathogen interactions in driving local adaptation in the European minnow, and highlight that the importance of adaptive processes driving MHCIIB gene evolution may differ among duplicates within species, presumably as a consequence of alternative selective regimes or different genomic context.  相似文献   

10.
The spatial distribution and histopathological changes induced by metacercariae of the digenean trematode Diplostomum phoxini (Faust, 1918) in the brains of European minnows Phoxinus phoxinus (L.) from the River Endrick, Scotland, were studied by light and electron microscopy. Post-mortem examination of a sample of 34 minnows revealed that 50% (n = 17) of the population was infected with 13.7 +/- 2.6 (mean +/- SE; range 1 to 38) metacercariae per infected host. Serial histological sections of the infected minnow brains revealed that the metacercariae were unevenly distributed throughout the brain, with aggregations occurring in the cerebellum, the medulla oblongata and the optic lobes. In fish with highest intensities of infection, over 40% of the cerebellar area and about 30% of the medulla oblongata area were occupied by larvae. Metacercariae disrupt the integrity of brain tissue, with individuals being found in small pockets surrounded by cellular debris. Metacercariae were rarely encountered on the surface of the brain. Electron microscopic examination of infection sites revealed that the granular layer surrounding metacercariae was necrotic, exhibited nuclear degradation and was marked by vacuolation of the cytoplasm. Rodlet cells, the only inflammatory cell types recorded in this study, were found only in parasitized brains and in close proximity to the teguments of metacercariae. It is hypothesised that secretions released from the teguments of metacercariae are a counter response to protect the metacercariae from the fish brain's cellular defence mechanisms.  相似文献   

11.
Ecologically, morphologically and genetically distinct populations within single taxa often coexist in postglacial lakes and have provided important model systems with which to investigate ecological and evolutionary processes such as niche partitioning and ecological speciation. Within the Salmonidae, these species complexes have been well studied, particularly within the Coregonus clupeaformisC. laveratus (lake and European whitefish, respectively) group, but the phenomenon has been less well documented in the other whitefish genera, Prosopium and Stenodus. Here, we examined the morphology, feeding biology and genetic structure of three putative forms of the pygmy whitefish, Prosopium coulterii (Eigenmann & Eigenmann, 1892), first reported from Chignik Lake, south‐western Alaska, over 40 years ago. Field collections and morphological analyses resolved a shallow water (< 5 m depth) low gill raker count form (< 15 first arch gill rakers), a deepwater (> 30 m), low gill raker form and a deepwater, high gill raker count (> 15 gill rakers) form. The two low gill raker count forms fed almost exclusively on benthic invertebrates (mostly chironomids), while the deepwater, high gill raker count form fed almost exclusively on zooplankton; differences in diet were also reflected in differences both in δ13C and δ15N stable isotopes. All three forms were characterized by the same major mitochondrial DNA clade that has been associated with persistence in, and postglacial dispersal from, a Beringian glacial refugium. Analysis of variation at nine microsatellite DNA loci indicated low, but significant differentiation among forms, especially between the two low gill raker count forms and the high gill raker count form. The extent of differentiation along phenotypic (considerable) and genetic (subtle) axes among the Chignik Lake forms is similar to that found among distinct taxa of Prosopium found in pre‐glacial Bear Lake (Utah–Idaho, USA) which is probably at least ten times older than Chignik Lake. Our analyses illustrate the potential for the postglacial differentiation in traits subject to divergent natural selection across variable environments.  相似文献   

12.
Damselfishes show significant biodiversity in the coral reefs. To better understand such diversity, an ecomorphological approach was investigated in the trophic morphology of eight species of Pomacentridae (Chromis acares, C. margaritifer, Dascyllus aruanus, D. flavicaudus, Pomacentrus pavo, Plectroglyphidodon johnstonianus, Pl. lacrymatus and Stegastes nigricans) belonging to different trophic guilds (zooplankton, algal, coral polyp feeders and omnivores). Geometric morphometrics were used to quantify size and shape variations in four skeletal units: (1) neurocranium, (2) suspensorium and opercle, (3) mandible and (4) premaxilla. This method allowed us to reveal shape and size differences correlated to functional diversity both within and between trophic guilds. Among zooplanktivores, C. margaritifer, D. aruanus and D. flavicaudus have a high and long supraoccipital crest, short mandibles forming a small mouth and high suspensoria and opercles. These three species can be considered to be suction feeders. In the same guild, C. acares shows opposite characteristics (long and thin mandibles, lengthened neurocranium and suspensorium) and can be considered as a ram feeder. Among herbivores and corallivores, the two species of Plectroglyphidodon and S. nigricans can be considered as grazers. Differences in skeletal shape are mainly related to improving the robustness of some skeletal parts (broad hyomandibular, short and high mandibles). The shapes of P. pavo, which feeds largely on algae, strongly differ from that of the other three grazers exhibiting similar morphological characteristics to C. acares (e.g., long and shallow suspensorium, lengthened neurocranium). This highlights likely differences concerning cutting or scraping method. Finally, no strong correlations exist between size and shapes in the eight studied species. Size difference among species having a very similar shape could be viewed as a factor optimizing resource partitioning.  相似文献   

13.
There are examples of coexisting species with similar morphology and ecology, in apparent contradiction to competition theory. Shrews (Soricidae) are a paradigmatic example of this because members of this group exhibit a conserved body form, relatively low variability in lifestyle, and, in many cases, a sympatric distribution. Here, we combined geometric morphometrics and ecological niche modeling to test whether diversification of soricid species inhabiting the Iberian Peninsula has been driven by niche divergence or, conversely, whether niche conservatism has played a paramount role in this process. We also examined whether pairwise morphological distances increase as the degree of niche overlap between species becomes greater, as would be expected if interspecific competition promotes morphological differentiation. Our results showed that water shrews (Neomys), white‐toothed shrews (Crocidurinae), and red‐toothed shrews (Soricinae) are clearly differentiated in terms of both skull shape and mandible shape. However, we found a lack of phylogenetic signal in most morphological traits, indicating that closely related species are not more similar than expected by random chance. Notably, water shrews show a more “triangular” or sharp skull than white‐toothed and red‐toothed shrews, probably as an adaptation to their semiaquatic lifestyle. In agreement with the phenotypic data, climatic traits (mean annual temperature and annual precipitation) were highly labile and sister taxa showed extensive differentiation in their realized niche space. Finally, we found that phenotypic distances between species tend to increase as the degree of niche overlap increases, suggesting that interspecific competition is an important factor in determining the level of morphological resemblance among relatives. Overall, our results indicate that the existence of limited morphological disparity in a given group does not necessarily imply the existence of a niche conservatism signature.  相似文献   

14.
The larvae of three species of the genus Diplodus (Diplodus vulgaris, D. sargus, and D. puntazzo) colonize shallow waters along the Mediterranean coasts and, after a short period spent in the water column, they settle. For all three species this habitat transition is characterized by important shape changes mostly related to swimming capacity and feeding behavior. In this study, geometric morphometrics are used to characterize shape changes during the early juvenile life of specimens collected in a single locality in order to compare growth curves and allometric relationships. Size-related shape changes proved to be similar for all three species and are consistent with the ecological transition. A nonparametric smoothing technique (Loess) was used to fit the scatter of shape on size. The graphical representation (of most size-related shape variability) of this fitting technique shows how major shape changes are rapid for small sizes and slow down successively. The approach allows for the visualization of allometry and the fitting technique might help in defining the allometric growth pattern, thus contributing to the study of the autoecology of the species and in establishing terms for comparison with other ecologically or phylogenetically related species.  相似文献   

15.
Resource polymorphism has been suggested to be a platform for speciation. In some cases resource polymorphism depends on phenotypic plasticity but in other cases on genetic differences between morphotypes, which in turn has been suggested to be the ongoing development of a species pair. Here we study environmentally induced morphological differences in two age classes of Arctic char ( Salvelinus alpinus ) influencing char performance and diet in relation to resource availability. We found that structurally complex habitats with relatively lower zooplankton densities gave rise to individuals with a deeper body, and a downward positioned tip of the snout compared with individuals from structurally simple habitats with relatively higher zooplankton densities for both age classes. Environment also had an effect on foraging efficiency on zooplankton, with fish from structurally simple habitats had a higher foraging rate than fish from structurally complex habitats. Diet analyses showed that resource use in char mainly depends on the relative abundance of different resources. Therefore, to gain further understanding of resource polymorphism we suggest that future studies must include population dynamic feedbacks by the resources on the consumers.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 341–351.  相似文献   

16.
It is critical to study factors that are important for origin and maintenance of biological diversity. A comparative approach involving a large number of populations is particularly useful. We use this approach to study the relationship between ecological factors and phenotypic diversity in Icelandic Arctic charr (Salvelinus alpinus). Numerous populations of small benthic charr have evolved in lava springs in Iceland. These charr appear morphologically similar, but differ in important morphological features related to feeding. We found a clear relationship between diversity in morphology, diet, and ecological factors among populations. In particular, there were clear differences in morphology and diet between fish coming from habitats where the lava spring flowed on as a stream compared to habitats where the lava spring flowed into a pond. Our study shows that ecological factors are important for the origin and maintenance of biological diversity. The relationship between phenotype and ecological factors are observed on a fine scale, when comparing numerous populations that are phenotypically similar. This strongly suggests that for understanding, managing, and conserving biological diversity important ecological variables have to be taken into the account.  相似文献   

17.
The body shape variation among 244 specimens of Periophthalmus waltoni Koumans, 1941, collected from seven stations in the Persian Gulf and Gulf of Oman, was analysed by utilising geometric morphometrics (GM) and truss-based morphometrics methods (TBM). Discriminant function analysis did not show significant differences between the shape of females and males. Canonical variate analysis and cluster analysis classified the specimens in two separate groups of stations: those in the Persian Gulf, and those in the Strait of Hormuz plus Gulf of Oman. Potential factors contributing to the observed variation include differences in physicochemical parameters between the Persian Gulf and the Gulf of Oman.  相似文献   

18.
The effects of different regimes of chemo-stimulation on the swim path in minnows ( Phoxinus phoxinus ) before and after olfactory deprivation were recorded by aid of a sensitive video-based motion analysis system (DOTFINDER 6cp, JVP). Time series of x-y co-ordinates were taken at 2·5 Hz from colour-marked individuals. From these co-ordinates, nine swim path parameters representing velocities, angles and inter-individual distances were calculated. Each experiment consisted of the application of a water control followed by stimulation with food extract, or body mucus dilutions of rainbow trout ( Oncorhynchus mykiss ) a potential predator. These procedures were replicated with the same individuals before and after removal of their olfactory epithelium. Compared to the controls, only food stimulation of intact fish resulted in significant changes of single parameters. Food-stimulated intact fish swam faster, less steadily, used more of the area and kept wider inter-individual distances than controls. No significant changes of single swim path parameters occurred between controls and experimentals in all other treatments. Cluster-analysis however, provided a fair separation of controls (stimulus=water) and experimental (stimulated by food or predator odour) individuals in intact fish, but failed to separate controls and experimentals in olfaction-deprived fish. Distance travelled, median velocity and total acea use were the most discriminating parameters.  相似文献   

19.
Habitat-associated morphological divergence in two Neotropical fish species   总被引:6,自引:0,他引:6  
We examined intraspecific morphological diversification between river channel and lagoon habitats for two Neotropical fish ( Bryconops caudomaculatus , Characidae; Biotodoma wavrini , Cichlidae). We hypothesized that differences between habitats (e.g. flow regime, foraging opportunities) might create selective pressures resulting in morphological divergence between conspecific populations. We collected fish from four channel-lagoon habitat pairs in the Río Cinaruco, Venezuela, and compared body morphology using geometric morphometrics. There were two aspects of divergence in both species: (1) placement of maximum body depth and (2) orientation of the mouth. For both species, maximum body depth was positioned more anteriorly (i.e. fusiform) in the river channel than in lagoons. Both species exhibited a relatively terminal mouth in lagoons compared to the channel. The mouth of B. caudomaculatus was relatively upturned, whereas the mouth of B. wavrini was relatively subterminal, in channel habitats. Observed morphological patterns are consistent with functional morphological principles suggesting adaptive divergence. We also show that spatial distance between habitats, presumably reflecting rates of population mixing, appears to have constrained diversification. For both species, morphological divergence increased with distance between habitats. Thus morphological divergence between channel and lagoon habitats apparently reflects a balance between diversification driven by natural selection, and homogenization driven by population mixing.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 689–698.  相似文献   

20.
Sexual selection can target many different types of traits. However, the relative influence of different sexually selected traits during evolutionary divergence is poorly understood. We used the field cricket Teleogryllus oceanicus to quantify and compare how five traits from each of three sexual signal modalities and components diverge among allopatric populations: male advertisement song, cuticular hydrocarbon (CHC) profiles and forewing morphology. Population divergence was unexpectedly consistent: we estimated the among‐population (genetic) variance‐covariance matrix, D , for all 15 traits, and Dmax explained nearly two‐thirds of its variation. CHC and wing traits were most tightly integrated, whereas song varied more independently. We modeled the dependence of among‐population trait divergence on genetic distance estimated from neutral markers to test for signatures of selection versus neutral divergence. For all three sexual trait types, phenotypic variation among populations was largely explained by a neutral model of divergence. Our findings illustrate how phenotypic integration across different types of sexual traits might impose constraints on the evolution of mating isolation and divergence via sexual selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号