首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteochondral defects (OCDs) are conditions affecting both cartilage and the underlying bone. Since cartilage is not spontaneously regenerated, our group has recently developed a strategy of injecting bioactive alginate hydrogel into the defect for promoting endogenous regeneration of cartilage via presentation of affinity‐bound transforming growth factor β1 (TGF‐β1). As in vivo model systems often provide only limited insights as for the mechanism behind regeneration processes, here we describe a novel flow bioreactor for the in vitro modeling of the OCD microenvironment, designed to promote cell recruitment from the simulated bone marrow compartment into the hydrogel, under physiological flow conditions. Computational fluid dynamics modeling confirmed that the bioreactor operates in a relevant slow‐flowing regime. Using a chemotaxis assay, it was shown that TGF‐β1 does not affect human mesenchymal stem cell (hMSC) chemotaxis in 2D culture. Accessible through live imaging, the bioreactor enabled monitoring and discrimination between erosion rates and profiles of different alginate hydrogel compositions, using green fluorescent protein‐expressing cells. Mathematical modeling of the erosion front progress kinetics predicted the erosion rate in the bioreactor up to 7 days postoperation. Using quantitative real‐time polymerase chain reaction of early chondrogenic markers, the onset of chondrogenic differentiation in hMSCs was detected after 7 days in the bioreactor. In conclusion, the designed bioreactor presents multiple attributes, making it an optimal device for mechanistical studies, serving as an investigational tool for the screening of other biomaterial‐based, tissue engineering strategies.  相似文献   

2.
Osteogenesis and the production of composite osteochondral tissues were investigated using human adult adipose‐derived stem cells and polyglycolic acid (PGA) mesh scaffolds under dynamic culture conditions. For osteogenesis, cells were expanded with or without osteoinduction factors and cultured in control or osteogenic medium for 2 weeks. Osteogenic medium enhanced osteopontin and osteocalcin gene expression when applied after but not during cell expansion. Osteogenesis was induced and mineralized deposits were present in tissues produced using PGA culture in osteogenic medium. For development of osteochondral constructs, scaffolds seeded with stem cells were precultured in either chondrogenic or osteogenic medium, sutured together, and cultured in dual‐chamber stirred bioreactors containing chondrogenic and osteogenic media in separate compartments. After 2 weeks, total collagen synthesis was 2.1‐fold greater in the chondroinduced sections of the composite tissues compared with the osteoinduced sections; differentiation markers for cartilage and bone were produced in both sections of the constructs. The results from the dual‐chamber bioreactor highlight the challenges associated with achieving simultaneous chondrogenic and osteogenic differentiation in tissue engineering applications using a single stem‐cell source. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

3.
A major clinical need exists for cartilage repair and regeneration. Despite many different strategies having been pursued, the identification of an optimised cell type and of pre-treatment conditions remains a challenge. This study compares the cartilage-like tissue generated by human bone marrow stromal cells (HBMSCs) and human neonatal and adult chondrocytes cultured on three-dimensional (3D) scaffolds under various conditions in vitro and in vivo with the aim of informing future cartilage repair strategies based upon tissue-engineering approaches. After 3 weeks in vitro culture, all three cell types showed cartilage-like tissue formation on 3D poly (lactide-co-glycolide) acid scaffolds only when cultured in chondrogenic medium. After 6 weeks of chondro-induction, neonatal chondrocyte constructs revealed the most cartilage-like tissue formation with a prominent superficial zone-like layer, a middle zone-like structure and the thinnest fibrous capsule. HBMSC constructs had the thickest fibrous capsule formation. Under basal culture conditions, neonatal articular chondrocytes failed to form any tissue, whereas HBMSCs and adult chondrocytes showed thick fibrous capsule formation at 6 weeks. After in vivo implantation, all groups generated more compact tissues compared with in vitro constructs. Pre-culturing in chondrogenic media for 1 week before implantation reduced fibrous tissue formation in all cell constructs at week 3. After 6 weeks, only the adult chondrocyte group pre-cultured in chondrogenic media was able to maintain a more chondrogenic/less fibrocartilaginous phenotype. Thus, pre-culture under chondrogenic conditions is required to maintain a long-term chondrogenic phenotype, with adult chondrocytes being a more promising cell source than HBMSCs for articular cartilage tissue engineering.  相似文献   

4.
Tissue engineering approaches to developing functional substitutes are often highly complex, multivariate systems where many aspects of the biomaterials, bio‐regulatory factors or cell sources may be controlled in an effort to enhance tissue formation. Furthermore, success is based on multiple performance criteria reflecting both the quantity and quality of the tissue produced. Managing the trade‐offs between different performance criteria is a challenge. A “windows of operation” tool that graphically represents feasible operating spaces to achieve user‐defined levels of performance has previously been described by researchers in the bio‐processing industry. This paper demonstrates the value of “windows of operation” to the tissue engineering field using a perfusion‐scaffold bioreactor system as a case study. In our laboratory, perfusion bioreactor systems are utilized in the context of bone tissue engineering to enhance the osteogenic differentiation of cell‐seeded scaffolds. A key challenge of such perfusion bioreactor systems is to maximize the induction of osteogenesis but minimize cell detachment from the scaffold. Two key operating variables that influence these performance criteria are the mean scaffold pore size and flow‐rate. Using cyclooxygenase‐2 and osteopontin gene expression levels as surrogate indicators of osteogenesis, we employed the “windows of operation” methodology to rapidly identify feasible operating ranges for the mean scaffold pore size and flow‐rate that achieved user‐defined levels of performance for cell detachment and differentiation. Incorporation of such tools into the tissue engineer's armory will hopefully yield a greater understanding of the highly complex systems used and help aid decision making in future translation of products from the bench top to the market place. Biotechnol. Bioeng. 2012; 109: 3161–3171. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
In many tissue engineering approaches, the basic difference between in vitro and in vivo conditions for cells within three‐dimensional (3D) constructs is the nutrition flow dynamics. To achieve comparable results in vitro, bioreactors are advised for improved cell survival, as they are able to provide a controlled flow through the scaffold. We hypothesize that a bioreactor would enhance long‐term differentiation conditions of osteogenic cells in 3D scaffolds. To achieve this either primary rat osteoblasts or bone marrow stromal cells (BMSC) were implanted on uniform‐sized biphasic calcium phosphate (BCP) scaffolds produced by a 3D printing method. Three types of culture conditions were applied: static culture without osteoinduction (Group A); static culture with osteoinduction (Group B); dynamic culture with osteoinduction (Group C). After 3 and 6 weeks, the scaffolds were analysed by alkaline phosphatase (ALP), dsDNA amount, SEM, fluorescent labelled live‐dead assay, and real‐time RT‐PCR in addition to weekly alamarBlue assays. With osteoinduction, increased ALP values and calcium deposition are observed; however, under static conditions, a significant decrease in the cell number on the biomaterial is observed. Interestingly, the bioreactor system not only reversed the decreased cell numbers but also increased their differentiation potential. We conclude from this study that a continuous flow bioreactor not only preserves the number of osteogenic cells but also keeps their differentiation ability in balance providing a suitable cell‐seeded scaffold product for applications in regenerative medicine.  相似文献   

6.
A medium perfusion system is expected to be beneficial for three‐dimensional (3D) culture of engineered bone, not only by chemotransport enhancement but also by mechanical stimulation. In this study, perfusion systems with either unidirectional or oscillatory medium flow were developed, and the effects of the different flow profiles on 3D culturing of engineered bone were studied. Mouse osteoblast‐like MC 3T3‐E1 cells were 3D‐cultured with porous ceramic scaffolds in vitro for 6 days under static and hydrodynamic conditions with either a unidirectional or oscillatory flow. We found that, in the static culture, the cells proliferated only on the scaffold surfaces. In perfusion culture with the unidirectional flow, the proliferation was significantly higher than in the other groups but was very inhomogeneous, which made the construct unsuitable for transplantation. Only the oscillatory flow allowed osteogenic cells to proliferate uniformly throughout the scaffolds, and also increased the activity of alkaline phosphatase (ALP). These results suggested that oscillatory flow might be better than unidirectional flow for 3D construction of cell‐seeded artificial bone. The oscillatory perfusion system could be a compact, safe, and efficient bioreactor for bone tissue engineering. Biotechnol. Bioeng. 2009;102: 1670–1678. © 2008 Wiley Periodicals, Inc.  相似文献   

7.
Bioreactors are crucial tools for the manufacturing of living cell‐based tissue engineered products. However, to reach the market successfully, higher degrees of automation, as well as a decreased footprint still need to be reached. In this study, the use of a benchtop bioreactor for in vitro perfusion culture of scaffold‐based tissue engineering constructs is assessed. A low‐footprint benchtop bioreactor system is designed, comprising a single‐use fluidic components and a bioreactor housing. The bioreactor is operated using an in‐house developed program and the culture environment is monitored by specifically designed sensor ports. A gas‐exchange module is incorporated allowing for heat and mass transfers. Titanium‐based scaffolds are seeded with human periosteum‐derived cells and cultured up to 3 weeks. The benchtop bioreactor constructs are compared to benchmark perfusion systems. Live/Dead stainings, DNA quantifications, glucose consumption, and lactate production assays confirm that the constructs cultured in the benchtop bioreactor grew similarly to the benchmark systems. Manual regulation of the system set points enabled efficient alteration of the culture environment in terms of temperature, pH, and dissolved oxygen. This study provides the necessary basis for the development of low‐footprint, automated, benchtop perfusion bioreactors and enables the implementation of active environment control.  相似文献   

8.
Perfusion bioreactor systems play a crucial role in mitigating nutrient limitation as well as providing biomechanical stimuli and redistributing regulatory macromolecules that influence human mesenchymal stem cells (hMSC) fate in three‐dimensional (3D) scaffolds. As fibroblast growth factor‐2 (FGF‐2) is known to regulate hMSC phenotype, understanding the role of autocrine FGF‐2 signaling in the 3D construct under the different perfusion flow provides important insight into an optimal bioreactor design. To investigate FGF‐2 signaling inhibition in hMSC cultured in the porous poly(ethylene terephthalate) (PET) scaffolds perfused under two flow configurations, PD173074, an FGFR1 inhibitor, was added in growth media after 7 day of pre‐culture and its impact on hMSC proliferation and clonogenicity during the subsequent 7 days of cultivation was analyzed. Compared with control constructs in growth media, the addition of PD173074 resulted in significant reduction in hMSC proliferation and colony formation in both constructs with a more dramatic reduction in the parallel flow constructs. The results demonstrate that autocrine FGF‐2 plays a significant role in 3D scaffold and suggest modulation of the perfusion flow in the bioreactor as a strategy to influence autocrine actions and cell fate in the 3D scaffold. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

9.
Human mesenchymal stem cells (hMSC) derived from bone marrow aspirates can form the basis for the in vitro cultivation of autologous tissue grafts and help alleviate the problems of immunorejection and disease transmission associated with the use of allografts. We explored the utility of hMSC cultured on protein scaffolds for tissue engineering of cartilage. hMSC were isolated, expanded in culture, characterized with respect to the expression of surface markers and ability for chondrogenic and osteogenic differentiation, and seeded on scaffolds. Four different scaffolds were tested, formed as a highly porous sponge made of: 1) collagen, 2) cross-linked collagen, 3) silk, and 4) RGD-coupled silk. Cell-seeded scaffolds were cultured for up to 4 weeks in either control medium (DMEM supplemented with 10% fetal bovine serum) or chondrogenic medium (control medium supplemented with chondrogenic factors). hMSC attachment, proliferation, and metabolic activity were markedly better on slowly degrading silk than on fast-degrading collagen scaffolds. In chondrogenic medium, hMSC formed cartilaginous tissues on all scaffolds, but the extent of chondrogenesis was substantially higher for hMSC cultured on silk as compared to collagen scaffolds. The deposition of glycosaminoglycan (GAG) and type II collagen and the expression of type II collagen mRNA were all higher for hMSC cultured on silk than on collagen scaffolds. Taken together, these results suggest that silk scaffolds are particularly suitable for tissue engineering of cartilage starting from hMSC, presumably due to their high porosity, slow biodegradation, and structural integrity.  相似文献   

10.
Mesenchymal stem cells (MSCs) have been recognized for their ability to differentiate into cells of different tissues such as bone, cartilage, or adipose tissue, and therefore are of great interest for potential therapeutic strategies. Adherent, colony-forming, fibroblastic cells were isolated from human bone marrow aspirates, from patients undergoing knee arthroplasties, and the MSCs phenotype characterized by flow cytometry. Afterward, cells were seeded onto electrospun polycaprolactone nanofiber meshes and cultured in a multichamber flow perfusion bioreactor to determine their ability to produce cartilagineous extracellular matrix. Results indicate that the flow perfusion bioreactor increased the chondrogenic differentiation of hBM-MSCs, as confirmed either by morphological and RT-PCR analysis. Cartilage-related genes such as aggrecan, collagen type II, and Sox9 were expressed. ECM deposition was also detected by histological procedures. Collagen type II was present in the samples, as well as collagen type I. Despite no statistically significant values being obtained for gene expression, the other results support the choice of the bioreactor for this type of culture.  相似文献   

11.
Lim JS  Ki CS  Kim JW  Lee KG  Kang SW  Kweon HY  Park YH 《Biopolymers》2012,97(5):265-275
In this study we investigated the blend electrospinning of poly(?‐caprolactone) (PCL) and silk fibroin (SF) to improve the biodegradability and biocompatibility of PCL‐based nanofibrous scaffolds. Optimal conditions to fabricate PCL/SF (50/50) blend nanofiber were established for electrospinning using formic acid as a cosolvent and three‐dimensional (3D) PCL/SF blend nanofibrous scaffolds were prepared by a modified electrospinning process using methanol coagulation bath. The physical properties of 2D PCL/SF blend nanofiber mats and 3D highly porous blend nanofibrous scaffolds were measured and compared. To evaluate cytocompatibility of the 3D blend scaffolds as compared to 3D PCL nanofibrous scaffold, normal human dermal fibroblasts were cultured. It is concluded that biodegradability and cytocompatibility could be improved for the 3D highly porous PCL/SF (50/50) blend nanofibrous scaffold prepared by blending PCL with SF in electrospinning. In addition to the blending of PCL and SF, the 3D structure and high porosity of electrospun nanofiber assemblies may also be important factors for enhancing the performance of scaffolds. © 2011 Wiley Periodicals, Inc. Biopolymers 97: 265–275, 2012.  相似文献   

12.
Shahin K  Doran PM 《PloS one》2011,6(8):e23119
Production of tissue-engineered cartilage involves the synthesis and accumulation of key constituents such as glycosaminoglycan (GAG) and collagen type II to form insoluble extracellular matrix (ECM). During cartilage culture, macromolecular components are released from nascent tissues into the medium, representing a significant waste of biosynthetic resources. This work was aimed at developing strategies for improving ECM retention in cartilage constructs and thus the quality of engineered tissues produced in bioreactors. Human chondrocytes seeded into polyglycolic acid (PGA) scaffolds were cultured in perfusion bioreactors for up to 5 weeks. Analysis of the size and integrity of proteoglycans in the constructs and medium showed that full-sized aggrecan was being stripped from the tissues without proteolytic degradation. Application of low (0.075 mL min(-1)) and gradually increasing (0.075-0.2 mL min(-1)) medium flow rates in the bioreactor resulted in the generation of larger constructs, a 4.0-4.4-fold increase in the percentage of GAG retained in the ECM, and a 4.8-5.2-fold increase in GAG concentration in the tissues compared with operation at 0.2 mL min(-1). GAG retention was also improved by pre-culturing seeded scaffolds in flasks for 5 days prior to bioreactor culture. In contrast, GAG retention in PGA scaffolds infused with alginate hydrogel did not vary significantly with medium flow rate or pre-culture treatment. This work demonstrates that substantial improvements in cartilage quality can be achieved using scaffold and bioreactor culture strategies that specifically target and improve ECM retention.  相似文献   

13.
Regenerative medicine-based approaches for the repair of damaged cartilage rely on the ability to propagate cells while promoting their chondrogenic potential. Thus, conditions for cell expansion should be optimized through careful environmental control. Appropriate oxygen tension and cell expansion substrates and controllable bioreactor systems are probably critical for expansion and subsequent tissue formation during chondrogenic differentiation. We therefore evaluated the effects of oxygen and microcarrier culture on the expansion and subsequent differentiation of human osteoarthritic chondrocytes. Freshly isolated chondrocytes were expanded on tissue culture plastic or CultiSpher-G microcarriers under hypoxic or normoxic conditions (5% or 20% oxygen partial pressure, respectively) followed by cell phenotype analysis with flow cytometry. Cells were redifferentiated in micromass pellet cultures over 4 weeks, under either hypoxia or normoxia. Chondrocytes cultured on tissue culture plastic proliferated faster, expressed higher levels of cell surface markers CD44 and CD105 and demonstrated stronger staining for proteoglycans and collagen type II in pellet cultures compared with microcarrier-cultivated cells. Pellet wet weight, glycosaminoglycan content and expression of chondrogenic genes were significantly increased in cells differentiated under hypoxia. Hypoxia-inducible factor-3α mRNA was up-regulated in these cultures in response to low oxygen tension. These data confirm the beneficial influence of reduced oxygen on ex vivo chondrogenesis. However, hypoxia during cell expansion and microcarrier bioreactor culture does not enhance intrinsic chondrogenic potential. Further improvements in cell culture conditions are therefore required before chondrocytes from osteoarthritic and aged patients can become a useful cell source for cartilage regeneration.  相似文献   

14.
We originally investigated the suitability of chitosan scaffolds loaded with bone morphogenetic protein 6 (BMP‐6) in both stationary and dynamic conditions for cartilage tissue engineering. In the first part of the present study, ATDC5 murine chondrogenic cells were seeded in chitosan and BMP‐6 loaded chitosan scaffolds and cultured for 28 days under static conditions. In the following part, we examined the influence of dynamic cultivation conditions over BMP‐6 loaded chitosan scaffolds by using rotating bioreactor with perfusion (RCMW?). Tissue engineered constructs were characterized by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐tetrazoliumbromide (MTT) assay, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and biochemical assays for glycosaminoglycans (GAG) deoxyribonucleic acid (DNA) and collagen Type II quantification. At the end of 4 weeks static incubation period high levels of GAG (21.22 mg/g dry weight), DNA amounts (1.37 mg/g dry weight) and collagen Type II amounts (1.94 µg/g dry weight) were achieved for BMP‐6 loaded chitosan scaffolds compared to chitosan scaffolds. However, the results obtained from morphological observations suggested hypertrophic differentiation of ATDC5 cells in the presence of BMP‐6 under stationary conditions. The influence of mechanical stimulation appeared significantly with differentiated cells, cultured under dynamic conditions, showing the effect of retaining their phenotypes without hypertrophy. Biotechnol. Bioeng. 2009; 104: 601–610 © 2009 Wiley Periodicals, Inc.  相似文献   

15.
Comparison of chondrogensis in static and perfused bioreactor culture   总被引:4,自引:0,他引:4  
As a result of the low yield of cartilage from primary patient harvests and a high demand for autologous cartilage for reconstructive surgery and structural repair, primary explant cartilage must be augmented by tissue engineering techniques. In this study, chondrocytes seeded on PLLA/PGA scaffolds in static culture and a direct perfusion bioreactor were biochemically and histologically analyzed to determine the effects of fluid flow and media pH on matrix assembly. A gradual media pH change was maintained in the bioreactor within 7.4-6.96 over 2 weeks compared to a more rapid decrease from 7.4 to 6.58 in static culture over 3 days. Seeded scaffolds subjected to 1 microm/s flow demonstrated a 118% increase (p < 0.05) in DNA content, a 184% increase (p < 0.05) in GAG content, and a 155% (p < 0.05) increase in hydroxyproline content compared to static culture. Distinct differences were noted in tissue morphology, including more intense staining for proteoglycans by safranin-O and alignment of cells in the direction of media flow. Culture of chondrocyte seeded matrices thus offers the possibility of rapid in vitro expansion of donor cartilage for the repair of structural defects, tracheal injury, and vascularized tissue damage.  相似文献   

16.
One approach to functional tissue engineering of cartilage is to utilize bioreactors to provide environmental conditions that stimulate chondrogenesis in cells cultured on biomaterial scaffolds. We report the combined use of a three-dimensional in vitro model and a novel bioreactor with perfusion of culture medium and mechanical stimulation in long-term studies of cartilage development and function. To engineer cartilage, scaffolds made of a non-woven mesh of polyglycolic acid (PGA) were seeded with bovine calf articular chondrocytes, cultured for an initial 30-day period under free swelling conditions, and cultured for an additional 37 day period in one of the three groups: (1) free-swelling, (2) static compression (on 24 h/day, strain control, static offset 10%), and (3) dynamic compression (on 1 h/day; off 23 h/day; strain control, static offset 2%, dynamic strain amplitude 5%; frequency 0.3 Hz). Constructs were sampled at timed intervals and assessed with respect to structure, biochemical composition, and mechanical function. Mechanical simulation had little effect on the compositions, morphologies and on mechanical properties of construct interiors discs, but it resulted in distincly different properties of the peripheral rings and face sides. Contructs cultured with mechanical loading maintained their cylindrical shape with flat and parallel top and bottom surfaces, and retained larger amounts of GAG. The modular bioreactor system with medium perfusion and mechanical loading can be utilized to define the conditions of cultivation for functional tissue engineering of cartilage.  相似文献   

17.
The discovery of induced pluripotent stem cells (iPSCs) rendered the reprogramming of terminally differentiated cells to primary stem cells with pluripotency possible and provided potential for the regeneration and restoration of cartilage defect. Chondrogenic differentiation of iPSCs is crucial for their application in cartilage tissue engineering. In this study we investigated the effect of 3D nanofibrous scaffolds on the chondrogenesis of iPSCs and articular cartilage defect restoration. Super-hydrophilic and durable mechanic polycaprolactone (PCL)/gelatin scaffolds were fabricated using two separate electrospinning processes. The morphological structure and mechanical properties of the scaffolds were characterized. The chondrogenesis of the iPSCs in vitro and the restoration of the cartilage defect was investigated using scanning electron microscopy (SEM), the Cell Counting Kit-8 (CCK-8), histological observation, RT-qPCR, and western blot analysis. iPSCs on the scaffolds expressed higher levels of chondrogenic markers than the control group. In an animal model, cartilage defects implanted with the scaffold-cell complex exhibited an enhanced gross appearance and histological improvements, higher cartilage-specific gene expression and protein levels, as well as subchondral bone regeneration. Therefore, we showed scaffolds with a 3D nanofibrous structure enhanced the chondrogenesis of iPSCs and that iPSC-containing scaffolds improved the restoration of cartilage defects to a greater degree than did scaffolds alone in vivo.  相似文献   

18.
Induced pluripotent stem cells (iPSC) hold tremendous potential for personalized cell‐based repair strategies to treat musculoskeletal disorders. To establish human iPSCs as a potential source of viable chondroprogenitors for articular cartilage repair, we assessed the in vitro chondrogenic potential of the pluripotent population versus an iPSC‐derived mesenchymal‐like progenitor population. We found the direct plating of undifferentiated iPSCs into high‐density micromass cultures in the presence of BMP‐2 promoted chondrogenic differentiation, however these conditions resulted in a mixed population of cells resembling the phenotype of articular cartilage, transient cartilage, and fibrocartilage. The progenitor cells derived from human iPSCs exhibited immunophenotypic features of mesenchymal stem cells (MSCs) and developed along multiple mesenchymal lineages, including osteoblasts, adipocytes, and chondrocytes in vitro. The data indicate the derivation of a mesenchymal stem cell population from human iPSCs is necessary to limit culture heterogeneity as well as chondrocyte maturation in the differentiated progeny. Moreover, as compared to pellet culture differentiation, BMP‐2 treatment of iPSC‐derived MSC‐like (iPSC–MSC) micromass cultures resulted in a phenotype more typical of articular chondrocytes, characterized by the enrichment of cartilage‐specific type II collagen (Col2a1), decreased expression of type I collagen (Col1a1) as well as lack of chondrocyte hypertrophy. These studies represent a first step toward identifying the most suitable iPSC progeny for developing cell‐based approaches to repair joint cartilage damage. J. Cell. Biochem. 114: 480–490, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The therapeutic potential of an engineered cartilage construct can be enhanced by sustained delivery of chondrogenic drug like melatonin from 3D porous scaffolds embedded with melatonin loaded bovine serum albumin nanoparticles (MNP). In this study, MNP was synthesized and loaded into polycaprolactone (PCL) scaffolds. 12 % (w/v) and 10 % (w/v) PCL scaffolds were fabricated with different concentrations of MNP. X- ray diffraction and Raman analysis of MNP and scaffolds revealed amorphization of melatonin which is highly desired in drug delivery applications. Additionally, Fourier Transform Infrared spectroscopic analysis confirmed the drug to be chemically inert to fabrication process. Field emission scanning electron microscopic analysis suggested highly interlinked porous scaffold (diameter 50 μm – 300 μm) and MNP diameters in the range of 110−200 nm. Importantly, UV spectrophotometric analysis showed that all groups of scaffolds showed sustained release for 21 days, wherein MNP concentration had an influence on release behaviour of melatonin from scaffolds. Drug release kinetics studied using mathematical models revealed, diffusion and dissolution mechanism of release. Furthermore, in vitro evaluation of MNP loaded scaffolds with Human chondrocytes for 21 days increased glycosaminoglycans deposition significantly. In brief, sustained release of melatonin from polycaprolactone scaffolds increased the therapeutic potential of the engineered construct.  相似文献   

20.
One important application of tissue engineering is to provide novel in vitro models for cell‐based assays. Perfusion microbioreactor array provides a useful tool for microscale tissue culture in parallel. However, high‐throughput data generation has been a challenge. In this study, a 4 × 4 array of perfusion microbioreactors was developed for plate‐reader compatible, time‐series quantification of cell proliferation, and cytotoxicity assays. The device was built through multilayer soft lithography. Low‐cost nonwoven polyethylene terephthalate fibrous matrices were integrated as modular tissue culture scaffolds. Human colon cancer HT‐29 cells with stable expression of enhanced green fluorescent protein were cultured in the device with continuous perfusion and reached a cell density over 5 × 107 cells/mL. The microbioreactor array was used to test a chemotherapeutic drug 5‐FU for its effect on HT‐29 cells in continuous perfusion 3D culture. Compared with conventional 2D cytotoxicity assay, significant drug resistance was observed in the 3D perfusion culture. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号