首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 353 毫秒
1.
Atmospheric and climatic change can alter plant biomass production and plant community composition. However, we know little about how climate change‐induced alterations in biomass production affect plant species composition. To better understand how climate change will alter both individual plant species and community biomass, we manipulated atmospheric [CO2], air temperature, and precipitation in a constructed old‐field ecosystem. Specifically, we compared the responses of dominant and subdominant species to our climatic treatments, and explored how changes in plant dominance patterns alter community evenness over 2 years. Our study resulted in four major findings: (1) all treatments, elevated [CO2], warming, and increased precipitation increased plant community biomass and the effects were additive rather than interactive, (2) plant species differed in their response to the treatments, resulting in shifts in the proportional biomass of individual species, which altered the plant community composition; however, the plant community response was largely driven by the positive precipitation response of Lespedeza, the most dominant species in the community, (3) precipitation explained most of the variation in plant community composition among treatments, and (4) changes in precipitation caused a shift in the dominant species proportional biomass that resulted in lower community evenness in the wet relative to dry treatments. Interestingly, compositional and evenness responses of the subdominant community to the treatments did not always follow the responses of the whole plant community. Our data suggest that changes in plant dominance patterns and community evenness are an important part of community responses to climatic change, and generally, that such compositional shifts can alter ecosystem biomass production and nutrient inputs.  相似文献   

2.
3.
As Earth's atmosphere accumulates carbon dioxide (CO2) and other greenhouse gases, Earth's climate is expected to warm and precipitation patterns will likely change. The manner in which terrestrial ecosystems respond to climatic changes will in turn affect the rate of climate change. Here we describe responses of an old‐field herbaceous community to a factorial combination of four levels of warming (up to 4 °C) and three precipitation regimes (drought, ambient and rain addition) over 2 years. Warming suppressed total production, shoot production, and species richness, but only in the drought treatment. Root production did not respond to warming, but drought stimulated the growth of deeper (> 10 cm) roots by 121% in 1 year. Warming and precipitation treatments both affected functional group composition, with C4 grasses and other annual and biennial species entering the C3 perennial‐dominated community in ambient rainfall and rain addition treatments as well as in warmed treatments. Our results suggest that, in this mesic system, expected changes in temperature or large changes in precipitation alone can alter functional composition, but they have little effect on total herbaceous plant growth. However, drought limits the capacity of the entire system to withstand warming. The relative insensitivity of our study system to climate suggests that the herbaceous component of old‐field communities will not dramatically increase production in response to warming or precipitation change, and so it is unlikely to provide either substantial increases in forage production or a meaningful negative feedback to climate change later this century.  相似文献   

4.
  1. Land management is known to have consequences for biodiversity; however, our synthetic understanding of its effects is limited due to highly variable results across studies, which vary in the focal taxa and spatial grain considered, as well as the response variables reported. Such synthetic knowledge is necessary for management of agroecosystems for high diversity and function.
  2. To fill this knowledge gap, we investigated the importance of scale‐dependent effects of land management (LM) (pastures vs. meadows), on plant and soil microbe diversity (fungi and bacteria) across 5 study sites in Central Germany. Analyses included diversity partitioning of species richness and related biodiversity components (i.e., density of individuals, species‐abundance distribution, and spatial aggregation) at two spatial grains (α‐ and γ‐scale, 1 m2 and 16 km2, respectively).
  3. Our results show scale‐dependent patterns in response to LM to be the norm rather than the exception and highlight the importance of measuring species richness and its underlying components at multiple spatial grains.
  4. Our outcomes provide new insight to the complexity of scale‐dependent responses within and across taxonomic groups. They suggest that, despite close associations between taxa, LM responses are not easily extrapolated across multiple spatial grains and taxa. Responses of biodiversity to LM are often driven by changes to evenness and spatial aggregation, rather than by changes in individual density. High‐site specificity of LM effects might be due to a variety of context‐specific factors, such as historic land management, identity of grazers, and grazing regime.
  5. Synthesis and applications: Our results suggest that links between taxa are not necessarily strong enough to allow for generalization of biodiversity patterns. These findings highlight the importance of considering multiple taxa and spatial grains when investigating LM responses, while promoting management practices that do the same and are tailored to local and regional conditions.
  相似文献   

5.
6.
  • In subalpine grasslands of the central French Alps, cessation of traditional mowing promotes dominance of Patzkea paniculata (L.) G.H.Loos (Poaceae) tussocks, with high biomass but low fodder quality. Mowing limits P. paniculata abundance through the depletion of its water‐soluble carbohydrate (WSC) reserves, which sustain early spring growth initiation. However, the effectiveness of mowing effects is modulated by grassland functional composition, fertilization and climate change, as WSC compounds, and notably fructans, support plant physiological responses to climate stresses such as drought or frost.
  • To characterize the mechanisms underpinning the control of P. paniculata under global change, we tested the effects of climate manipulation (combined snow removal and drought) and management (cutting and fertilization) alone or in combination on P. paniculata WSC storage in assembled grassland communities of varying functional composition.
  • Management and climate treatments individually decreased seasonal fructan storage, with neither additive nor synergic effects between them, primarily due to the dominance of management over climate effects. Fructan amounts were higher in individuals growing in unmanaged exploitative communities compared to unmanaged conservative communities, regardless of climate treatments, but management overrode these differences.
  • Our findings suggest that reduction by combined snow removal and drought of P. paniculata carbon allocation to WSC storage may similarly limit its dominance to that in current mowing practices.
  相似文献   

7.
8.
Global warming and recurring drought are expected to accelerate water limitation for plant communities in semiarid Mediterranean ecosystems and produce directional shifts in structure and composition that are not easily detected, and supporting evidence is scarce. We conducted a long‐term (17 years) nocturnal‐warming (+0.6°C) and drought (?40% rainfall) experiments in an early‐successional Mediterranean shrubland to study the changes in community structure and composition, contrasting functional groups and dominant species, and the superimposed effects of natural extreme drought. Species richness decreased in both the warming and drought treatments. Responses to the moderate warming were associated with decreases in herb abundance, and responses to the drought were associated with decreases in both herb and shrub abundances. The drought also significantly decreased community diversity and evenness. Changes in abundance differed between herbs (decreases) and shrubs (increases or no changes). Both warming and drought, especially drought, increased the relative species richness and abundance of shrubs, favoring the establishment of shrubs. Both warming and drought produced significant shifts in plant community composition. Experimental warming shifted the community composition from Erica multiflora toward Rosmarinus officinalis, and drought consistently shifted the composition toward Globularia alypum. The responses in biodiversity (e.g., community biodiversity, changes of functional groups and compositional shifts) were also strongly correlated with atmospheric drought (SPEI) in winter–spring and/or summer, indicating sensitivity to water limitation in this early‐successional Mediterranean ecosystem, especially to natural extreme droughts. Our results suggest that the shifts in species assembles and community diversity and composition are accelerated by the long‐term nocturnal‐warming and drought, combined with natural severe droughts, and that the magnitude of the impacts of climate change is also correlated with the successional status of ecosystem. The results thus highlight the necessity for assessing the impacts on ecosystemic functioning and services and developing effective measures for conserving biodiversity.  相似文献   

9.
10.
11.
  • Intraspecific trait variation (ITV; i.e. variability in mean and/or distribution of plant attribute values within species) can occur in response to multiple drivers. Environmental change and land‐use legacies could directly alter trait values within species but could also affect them indirectly through changes in vegetation cover. Increasing variability in environmental conditions could lead to more ITV, but responses might differ among species. Disentangling these drivers on ITV is necessary to accurately predict plant community responses to global change.
  • We planted herb communities into forest soils with and without a recent history of agriculture. Soils were collected across temperate European regions, while the 15 selected herb species had different colonizing abilities and affinities to forest habitat. These mesocosms (384) were exposed to two‐level full‐factorial treatments of warming, nitrogen addition and illumination. We measured plant height and specific leaf area (SLA).
  • For the majority of species, mean plant height increased as vegetation cover increased in response to light addition, warming and agricultural legacy. The coefficient of variation (CV) for height was larger in fast‐colonizing species. Mean SLA for vernal species increased with warming, while light addition generally decreased mean SLA for shade‐tolerant species. Interactions between treatments were not important predictors.
  • Environmental change treatments influenced ITV, either via increasing vegetation cover or by affecting trait values directly. Species’ ITV was individualistic, i.e. species responded to different single resource and condition manipulations that benefited their growth in the short term. These individual responses could be important for altered community organization after a prolonged period.
  相似文献   

12.
13.
Climate change projections anticipate increased frequency and intensity of drought stress, but grassland responses to severe droughts and their potential to recover are poorly understood. In many grasslands, high land‐use intensity has enhanced productivity and promoted resource‐acquisitive species at the expense of resource‐conservative ones. Such changes in plant functional composition could affect the resistance to drought and the recovery after drought of grassland ecosystems with consequences for feed productivity resilience and environmental stewardship. In a 12‐site precipitation exclusion experiment in upland grassland ecosystems across Switzerland, we imposed severe edaphic drought in plots under rainout shelters and compared them with plots under ambient conditions. We used soil water potentials to scale drought stress across sites. Impacts of precipitation exclusion and drought legacy effects were examined along a gradient of land‐use intensity to determine how grasslands resisted to, and recovered after drought. In the year of precipitation exclusion, aboveground net primary productivity (ANPP) in plots under rainout shelters was ?15% to ?56% lower than in control plots. Drought effects on ANPP increased with drought severity, specified as duration of topsoil water potential ψ < ?100 kPa, irrespective of land‐use intensity. In the year after drought, ANPP had completely recovered, but total species diversity had declined by ?10%. Perennial species showed elevated mortality, but species richness of annuals showed a small increase due to enhanced recruitment. In general, the more resource‐acquisitive grasses increased at the expense of the deeper‐rooted forbs after drought, suggesting that community reorganization was driven by competition rather than plant mortality. The negative effects of precipitation exclusion on forbs increased with land‐use intensity. Our study suggests a synergistic impact of land‐use intensification and climate change on grassland vegetation composition, and implies that biomass recovery after drought may occur at the expense of biodiversity maintenance.  相似文献   

14.
15.

Questions

Does functional diversity play a more important role than species richness in complementary resource use? Is the effect of functional diversity on complementarity greater when species evenness is higher? Does functional dominance play an important role in resource use when species evenness is low?

Location

An arable field in Linhai City, Zhejiang Province, China.

Methods

We assembled experimental plant communities with different species richness (one, two, four, eight and 12 species) and evenness (low and high). In each community, we quantified light interception efficiency (LIE ) and light complementarity index (LC ) to reflect light use. We measured four functional traits related to light capture to quantify functional diversity and functional dominance. We then tested effects of observed species richness, functional diversity and functional dominance on LIE , LC and above‐ground biomass in the low and high evenness communities.

Results

Functional diversity was positively related to LIE , LC and above‐ground biomass in the high evenness communities, but not in the low evenness communities. In contrast, functional dominance was positively related to LIE and negatively related to LC in the low evenness communities, but not in the high evenness communities. Moreover, functional dominance had a larger promotion to above‐ground biomass in the low evenness communities. Observed species richness and evenness had a significant interactive effect on LIE and LC . LIE of a species mixture of the low evenness communities was positively correlated with LIE of the monoculture consisting of the species with the highest initial abundance in the species mixture, while LC of a species mixture of the low evenness communities was negatively correlated with it.

Conclusions

Functional diversity and functional dominance play a crucial role in light complementary use of plant communities, and their effects on light complementarity are mediated by species evenness. Thus, interactions of functional traits and evenness may greatly affect ecosystem functioning.
  相似文献   

16.
Timing of precipitation events within the growing season and the non-uniformity of warming might be decisive for alterations in productivity and community composition, with consequences for ecosystem functioning. The responses of aboveground production, community composition, functional group and species evenness to altered intra-annual precipitation variability and their interactions with winter or summer warming were examined in European, mesic temperate grassland. Increased precipitation variability with an induced spring drought resulted in a 17% reduction in ANPP, and late drought reduced ANPP by 18% compared to regular rainfall patterns throughout the entire growing season. Winter warming increased ANPP by 12%, whereas summer warming showed no significant effect on biomass but decreased species richness. The effects of increased precipitation variability and warming on ANPP were independent of each other. Forbs benefited from high precipitation variability with spring drought events, likely due to reduced competitive pressure by decreasing, water stressed grasses. Increased precipitation variability coinciding with higher summer temperatures led to reduced species evenness and likely promoted the establishment of specialists and drought-tolerant species. Seasonality of climatic factors, here early versus late drought events in the high precipitation variability treatments, was important in driving shifts in community composition but not for decreases in ANPP. Non-uniform warming, here winter versus summer, affected the direction of response of both community composition and ANPP. Variability of resources is affecting ecosystem processes and species interactions. Recognition of seasonality and non-uniformity of climatic factors will improve predictions of plant performance and biotic interactions in response to climate change.  相似文献   

17.
  1. Freshwater fishes are now facing unprecedented environmental changes across their northern ranges, especially due to rapid warming occurring at higher latitudes. However, empirical research that examines co-occurring environmental effects on northern fish communities remains limited.
  2. We used fish community data from 1587 Alaskan stream sites to examine the potential combined and interacting effects of climate change, current weather, habitat, land use, and fire on two community-level metrics (species richness, relative abundance), and on the distributions of three Alaskan fish species.
  3. Our models were 71–76% accurate in predicting the distribution of Alaskan stream fishes using a combination of climate and habitat variables. In contrast to other freshwater ecosystems that are most threatened by land use pressures, we did not detect any evidence for the potential stress of anthropogenic land use or fire on stream fishes.
  4. Warming temperatures increased overall community richness and abundance but produced differing responses at the species level. Juvenile salmon presence was positively associated with several climate variables including warmer spring and autumn temperatures and wetter summers. In comparison, warmer seasonal temperatures contributed to declines for northern-adapted species such as Arctic grayling and Dolly Varden.
  5. This study highlights the overarching role of current and changing climate in regulating northern stream fish biodiversity. Although many fish species may benefit from climate change across their northern ranges, localised declines are likely to occur and may prove detrimental for communities with limited fishing portfolios. Climate change adaptation and mitigation strategies customised for rapidly changing northern ecosystems will play an essential role in preserving ecologically unique northern species.
  相似文献   

18.
19.
Soil respiration (Rs) is the second‐largest terrestrial carbon (C) flux. Although Rs has been extensively studied across a broad range of biomes, there is surprisingly little consensus on how the spatiotemporal patterns of Rs will be altered in a warming climate with changing precipitation regimes. Here, we present a global synthesis Rs data from studies that have manipulated precipitation in the field by collating studies from 113 increased precipitation treatments, 91 decreased precipitation treatments, and 14 prolonged drought treatments. Our meta‐analysis indicated that when the increased precipitation treatments were normalized to 28% above the ambient level, the soil moisture, Rs, and the temperature sensitivity (Q10) values increased by an average of 17%, 16%, and 6%, respectively, and the soil temperature decreased by ?1.3%. The greatest increases in Rs and Q10 were observed in arid areas, and the stimulation rates decreased with increases in climate humidity. When the decreased precipitation treatments were normalized to 28% below the ambient level, the soil moisture and Rs values decreased by an average of ?14% and ?17%, respectively, and the soil temperature and Q10 values were not altered. The reductions in soil moisture tended to be greater in more humid areas. Prolonged drought without alterations in the amount of precipitation reduced the soil moisture and Rs by ?12% and ?6%, respectively, but did not alter Q10. Overall, our synthesis suggests that soil moisture and Rs tend to be more sensitive to increased precipitation in more arid areas and more responsive to decreased precipitation in more humid areas. The responses of Rs and Q10 were predominantly driven by precipitation‐induced changes in the soil moisture, whereas changes in the soil temperature had limited impacts. Finally, our synthesis of prolonged drought experiments also emphasizes the importance of the timing and frequency of precipitation events on ecosystem C cycles. Given these findings, we urge future studies to focus on manipulating the frequency, intensity, and seasonality of precipitation with an aim to improving our ability to predict and model feedback between Rs and climate change.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号