共查询到20条相似文献,搜索用时 0 毫秒
1.
Pallab Datta Veli Ozbolat Bugra Ayan Aman Dhawan Ibrahim T. Ozbolat 《Biotechnology and bioengineering》2017,114(11):2424-2431
2.
Emma Brazel 《Computer methods in biomechanics and biomedical engineering》2013,16(3):297-304
Bone defects create stress concentrations which can cause fracture under impact or cyclic loading. Defects are often repaired by filling them with a bone graft material; this will reduce the stress concentration, but not completely, because these materials have lower stiffness than bone. The fracture risk decreases over time as the graft material is replaced by living bone. Many new bone graft materials are being developed, using tissue engineering and other techniques, but currently there is no rational way to compare these materials and predict their effectiveness in repairing a given defect. This paper describes, for the first time, a theoretical model which can be used to predict failure by brittle fracture or fatigue, initiating at the defect. Preliminary results are presented, concentrating on the prediction of stress fracture during the crucial post-operative period. It is shown that the likelihood of fracture is strongly influenced by the shape of the defect as well as its size, and also by the level of post-operative exercise. The most important finding is that bone graft materials can be successful in preventing fracture even when their mechanical properties are greatly inferior to those of bone. Future uses of this technique include pre-clinical assessment of bone replacement materials and pre-operative planning in orthopaedic surgery. 相似文献
3.
4.
Alann Thaffarell Portilho Souza Gileade Pereira Freitas Helena Bacha Lopes Emanuela Prado Ferraz Fabiola Singaretti Oliveira Marcio Mateus Beloti Adalberto Luiz Rosa 《Cytotherapy》2018,20(10):1267-1277
Background aims
Regenerative medicine strategies based on cell therapy are considered a promising approach to repair bone defects. The aims of this study were to evaluate the effect of subculturing on the osteogenic potential of osteoblasts derived from newborn rat calvaria and the effect of these osteoblasts on bone repair of rat calvaria defects.Methods
Cells were obtained from 50 newborn rat calvaria, and primary osteoblasts (OB) were compared with first passage (OB-P1) in terms of osteogenic potential by assaying cell proliferation, alkaline phosphatase (ALP) activity, extracellular matrix mineralization and gene expression of the osteoblastic markers RUNX2, ALP, osteocalcin and bone sialoprotein. Then, 5-mm calvaria defects were created in 24 Wistar rats, and after 2 weeks, they were locally injected with 50 µL of phosphate-buffered saline containing either 5?×?106 osteoblasts (OB-P1, n?=?12) or no cells (control, n?=?12). Four weeks post-injection, the bone formation was evaluated by micro-computed tomography and histological analyses. Data were compared by analysis of variance, followed by the Student-Newman-Keuls's test or Student's t-test (P ≤ 0.05).Results
OB-P1 showed high proliferation and ALP activity, and despite the reduced gene expression of osteoblastic markers and extracellular matrix mineralization compared with OB, they displayed osteogenic potential, being a good choice for injection into calvaria defects. The micro-tomographic and histological data showed that defects treated with OB-P1 presented higher bone formation compared with control defects.Discussion
Our results indicate that cells derived from newborn rat calvaria retain osteoblastic characteristics after subculturing and that these osteoblasts stimulate bone repair in a rat calvaria defect model. 相似文献5.
脱细胞基质(decellularized extracellular matrix, dECM)旨在去除引起免疫排斥的细胞,保留原组织结构和成分。由于其具有与原组织器官相似的结构和成分,在组织工程和生物医学的应用上受到广泛关注,已成为一种很有前景的生物医学材料。通过适当的脱细胞方法,dECM很容易能够从组织器官中获得。文中总结了脱细胞的方法及最新研究进展,同时对脱细胞后支架灭菌、交联和保存的方式进行综述,概括了不同组织器官获得的脱细胞支架的最新应用及进展。最后对脱细胞支架目前面临的问题和挑战进行分析,并展望了未来的发展趋势。 相似文献
6.
7.
Duško Spasovski Vesna Spasovski Zoran Baščarević Maja Stojiljković Miša Vreća Marina Anđelković Sonja Pavlović 《The journal of gene medicine》2018,20(1)
Background
Osteoarthritis (OA) is a chronic degenerative joint disease and is considered to be the fourth leading cause of disability and the second cause of inability to work in men. Recently, adipose‐derived mesenchymal stem cells (AD‐MSCs) came into focus for regenerative medicine as a promising tool for the treatment of OA. The administration of stem cells into impaired joints results in pain relief and improves quality of life, accompanied by restoration of hyaline articular cartilage.Methods
In the present study, nine patients (including two patients with bilateral symptoms) diagnosed with osteoarthritis (International Knee Documentation grade B in 5 and grade D in six knees) were treated using a single injection of AD‐MSCs at a concentration of 0.5–1.0 × 107 cells and were followed up for 18 months. During follow‐up, all the cases were evaluated clinically by Knee Society score (KSS), Hospital for Special Surgery knee score (HSS‐KS), Tegner–Lysholm (T–L) score and visual analogue scale (VAS) of pain, as well as by plain radiography and by magnetic resonance imaging visualization with 2D Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score assessment.Results
Significant improvement of all four clinical scores was observed within the first 6 months (KSS for 41.4 points, HSS‐KS for 33.9 points, T–L score for 44.8 points, VAS of pain from 54.5 to 9.3) and improvement persisted throughout the rest of the follow‐up. MOCART score showed significant cartilage restoration (from 43 ± 7.2 to 63 ± 17.1), whereas radiography showed neither improvement, nor further joint degeneration.Conclusions
The results obtained in the present study provide good basis for prospective randomized controlled clinical trials with respect to the use of AD‐MSCs in the treatment of osteoarthritis. 相似文献8.
组织工程技术已被普遍认为是解决组织、器官缺损修复与功能重建的有效手段,它的飞速发展依赖于细胞学、材料学、工程学、临床医学等多学科的交叉渗透.作为组织工程的三大核心,种子细胞、生物材料、组织构建各方面的突破,为组织工程技术的发展奠定了基础.组织工程国家工程中心近年来围绕上述核心开展了系列研究,通过研究胚胎干细胞、成体干细胞、同种异体干细胞、以及发育同源细胞替代的探索,为解决种子细胞来源问题提供了多种选择;生物支架材料的开发,为细胞增殖分化、组织再生提供理想的支持与空间,而生物反应器的开发与应用,进一步提高了组织构建技术,为促进组织的体外形成、重塑和功能成熟创造了条件.在此基础上,开展了大动物体内组织构建和缺损修复的研究,形成了以应用为目标的研究特色,并成功将部分技术应用于临床治疗.本文将对组织工程国家工程中心已有进展做简单介绍并对面临的挑战进行分析. 相似文献
9.
10.
11.
12.
An HPLC method for quantifying the 3-hydroxypyridinium crosslinks of collagen is described. It can be applied to crude hydrolysates of all types of connective tissue. Mineralized tissues can be hydrolyzed directly and analyzed without interference from the mineral ions. The hydroxylysyl (HP) and lysyl (LP) forms of hydroxypyridinium residue were resolved on a reverse-phase C18 column using a gradient of acetonitrile in water and 0.01 M n-heptafluorobutyric acid as an ion-pairing agent. The crosslinking amino acids were accurately quantified down to 2 PM (1 ng) injected, by detecting their natural fluorescence with a spectrofluorometer. Tissues in which hydroxypyridinium crosslinks were plentiful included all forms of cartilage, bone, dentin, ligament, tendon, fascia, intervertebral disc, lung, gut, cervix, aorta, and vitreous humor. Among normal tissues, LP, the minor form of the crosslink, was present in significant amounts relative to HP only in bone and dentin. Both crosslinks were essentially absent from skin, cornea, rat tail tendon, and basement membranes. 相似文献
13.
Anne Kemp 《Journal of morphology》2013,274(10):1085-1089
The connective tissue that links the bones of the mandible in the Australian lungfish, Neoceratodus forsteri, has been described as an intermandibular cartilage, and as such has been considered important for phylogenetic analyses among lower vertebrates. However, light and electron microscopy of developing lungfish jaws demonstrates that the intermandibular tissue, like the connective tissue that links the bones of the upper jaw, contains fibroblasts and numerous bundles of collagen fibrils, extending from the trabeculae of the bones supporting the tooth plates. It differs significantly in structure and in staining reactions from the cartilage and the bone found in this species. In common with the cladistian Polypterus and with actinopterygians and some amphibians, lungfish have no intermandibular cartilage. The connective tissue linking the mandibular bones has no phylogenetic significance for systematic grouping of lungfish, as it is present in a range of different groups among lower vertebrates. J. Morphol. 274:1085–1089, 2013. © 2013 Wiley Periodicals, Inc. 相似文献
14.
15.
Stem cells are the core of tissue repair and regeneration,and a promising cell source for novel therapies.In recent years,research into stem cell therapies has been particularly exciting in China.The remarkable advancements in basic stem cell research and clinically effective trials have led to fresh insights into regenerative medicine,such as treatments for sweat gland injury after burns,diabetes,and liver injury.High hopes have inspired numerous experimental and clinical trials.At the same time,government investment and policy support of research continues to increase markedly.However,numerous challenges must be overcome before novel stem cell therapies can achieve meaningful clinical outcomes. 相似文献
16.
Andrea Di Luca Clemens Van Blitterswijk Lorenzo Moroni 《Birth defects research. Part C, Embryo today : reviews》2015,105(1):34-52
The osteochondral (OC) interface is not only the interface between two tissues, but also the evolution of hard and stiff bone tissue to the softer and viscoelastic articular cartilage covering the joint surface. To generate a smooth transition between two tissues with such differences in many of their characteristics, several gradients are recognizable when moving from the bone side to the joint surface. It is, therefore, necessary to implement such gradients in the design of scaffolds to regenerate the OC interface, so to mimic the anatomical, biological, and physicochemical properties of bone and cartilage as closely as possible. In the past years, several scaffolds were developed for OC regeneration: biphasic, triphasic, and multilayered scaffolds were used to mimic the compartmental nature of this tissue. The structure of these scaffolds presented gradients in mechanical, physicochemical, or biological properties. The use of gradient scaffolds with already differentiated or progenitor cells has been recently proposed. Some of these approaches have also been translated in clinical trials, yet without the expected satisfactory results, thus suggesting that further efforts in the development of constructs, which can lead to a functional regeneration of the OC interface by presenting gradients more closely resembling its native environment, will be needed in the near future. The aim of this review is to analyze the gradients present in the OC interface from the early stage of embryonic life up to the adult organism, and give an overview of the studies, which involved gradient scaffolds for its regeneration. Birth Defects Research (Part C) 105:34–52, 2015. © 2015 Wiley Periodicals, Inc. 相似文献
17.
Edward J. Caterson Stephanie A. Caterson 《Birth defects research. Part C, Embryo today : reviews》2008,84(4):322-334
Regeneration in medicine is a concept that has roots dating back to the earliest known records of medical interventions. Unfortunately, its elusive promise has still yet to become a reality. In the field of plastic surgery, we use the common tools of the surgeon grounded in basic operative principles to achieve the present day equivalent of regenerative medicine. These reconstructive efforts involve a broad range of clinical deformities, both congenital and acquired. Outlined in this review are comments on clinical conditions and the current limitations to reconstruct these clinical entities in the effort to practice regenerative medicine. Cleft lip, microtia, breast reconstruction, and burn reconstruction have been selected as examples to demonstrate the incredible spectrum and diverse challenges that plastic surgeons attempt to reconstruct. However, on a molecular level, these vastly different clinical scenarios can be unified with basic understanding of development, alloplastic integration, wound healing, cell–cell, and cell‐matrix interactions. The themes of current and future molecular efforts involve coalescing approaches to recapitulate normal development in clinical scenarios when reconstruction is needed. It will be a better understanding of stem cells, scaffolding, and signaling with extracellular matrix interactions that will make this future possible. Eventually, reconstructive challenge will utilize more than the current instruments of surgical steel but engage complex interventions at the molecular level to sculpt true regeneration. Immense amounts of research are still needed but there is promise in the exploding fields of tissue engineering and stem cell biology that hint at great opportunities to improve the lives of our patients. Birth Defects Research (Part C) 84:322–334, 2008. © 2008 Wiley‐Liss, Inc. 相似文献
18.
Hilary Ireland Max H.P. Gay Helen Baldomero Barbara De Angelis Hossein Baharvand Mark W. Lowdell Jakob Passweg Ivan Martin 《Cytotherapy》2018,20(1):1-20
Background aims
With the support of five established scientific organizations, this report, the seventh of its kind, describes activity in Europe for the years 2014 and 2015 in the area of cellular and tissue-engineered therapies, excluding hematopoietic stem cell (HSC) treatments for the reconstitution of hematopoiesis.Methods
In 2015 [respectively 2014], 205 [276] teams from 32 countries responded to the cellular and tissue-engineered therapy survey; 178 [126] teams reported treating 3686 [2665] patients.Results
Indications were musculoskeletal/rheumatological disorders (32% [33%]), cardiovascular disorders (12% [21%]), hematology/oncology (predominantly prevention or treatment of graft versus host disease and HSC graft enhancement; 20% [20%]), neurological disorders (4% [6%]), gastrointestinal disorders (<1% [1%]) and other indications (31% [20%]). The majority of autologous cells (60% [73%]) were used to treat musculoskeletal/rheumatological (44% [36%]) disorders, whereas allogeneic cells were used mainly for hematology/oncology (61% [68%]). The reported cell types were mesenchymal stromal cells (40% [49%]), chondrocytes (13% [6%]), hematopoietic stem cells (12% [23%]), dermal fibroblasts (8% [3%]), dendritic cells (2% [2%]), keratinocytes (1% [2%]) and others (24% [15%]). Cells were expanded in vitro in 63% [40%] of the treatments, sorted in 16% [6%] of the cases and rarely transduced (<1%). Cells were delivered predominantly as suspension 43% [51%], intravenously or intra-arterially (30% [30%]), or using a membrane/scaffold (25% [19%]).Discussion
The data are compared with those from previous years to identify trends in a still unpredictably evolving field. Perspectives of representatives from plastic surgery practitioners, Iran and ISCT are presented (contributing authors D.A. Barbara, B. Hossein and W.L. Mark, respectively). 相似文献19.
Cavallo C Cuomo C Fantini S Ricci F Tazzari PL Lucarelli E Donati D Facchini A Lisignoli G Fornasari PM Grigolo B Moroni L 《Journal of cellular biochemistry》2011,112(5):1418-1430
With the continuous discovery of new alternative sources containing mesenchymal stem cells (MSCs), regenerative medicine therapies may find tailored applications in the clinics. Although these cells have been demonstrated to express specific mesenchymal markers and are able to differentiate into mesenchymal lineages in ad hoc culture conditions, it is still critical to determine the yield and differentiation potential of these cells in comparative studies under the same standardized culture environment. Moreover, the opportunity to use MSCs from bone marrow (BM) of multiorgan donors for cell banking is of relevant importance. In the attempt to establish the relative potential of alternative MSCs sources, we analyzed and compared the yield and differentiation potential of human MSCs from adipose and BM tissues of cadaveric origins, and from fetal annexes (placenta and umbilical cord) after delivery using standardized isolation and culture protocols. BM contained a significantly higher amount of mononuclear cells (MNCs) compared to the other tissue sources. Nonetheless, a higher cell seeding density was needed for these cells to successfully isolate MSCs. The MNCs populations were highly heterogeneous and expressed variable MSCs markers with a large variation from donor to donor. After MSCs selection through tissue culture plastic adhesion, cells displayed a comparable proliferation capacity with distinct colony morphologies and were positive for a pool of typical MSCs markers. In vitro differentiation assays showed a higher osteogenic differentiation capacity of adipose tissue and BM MSCs, and a higher chondrogenic differentiation capacity of BM MSCs. 相似文献
20.
Arvidson K Abdallah BM Applegate LA Baldini N Cenni E Gomez-Barrena E Granchi D Kassem M Konttinen YT Mustafa K Pioletti DP Sillat T Finne-Wistrand A 《Journal of cellular and molecular medicine》2011,15(4):718-746
This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed. 相似文献