首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding how thermal selection affects phenotypic distributions across different time scales will allow us to predict the effect of climate change on the fitness of ectotherms. We tested how seasonal temperature variation affects basal levels of cold tolerance and two types of phenotypic plasticity in Drosophila melanogaster. Developmental acclimation occurs as developmental stages of an organism are exposed to seasonal changes in temperature and its effect is irreversible, while reversible short‐term acclimation occurs daily in response to diurnal changes in temperature. We collected wild flies from a temperate population across seasons and measured two cold tolerance metrics (chill‐coma recovery and cold stress survival) and their responses to developmental and short‐term acclimation. Chill‐coma recovery responded to seasonal shifts in temperature, and phenotypic plasticity following both short‐term and developmental acclimation improved cold tolerance. This improvement indicated that both types of plasticity are adaptive, and that plasticity can compensate for genetic variation in basal cold tolerance during warmer parts of the season when flies tend to be less cold tolerant. We also observed a significantly stronger trade‐off between basal cold tolerance and short‐term acclimation during warmer months. For the longer‐term developmental acclimation, a trade‐off persisted regardless of season. A relationship between the two types of plasticity may provide additional insight into why some measures of thermal tolerance are more sensitive to seasonal variation than others.  相似文献   

2.
Many biotic and abiotic variables influence the dispersal and distribution of organisms. Temperature has a major role in determining these patterns because it changes daily, seasonally and spatially, and these fluctuations have a significant impact on an organism's behaviour and fitness. Most ecologically relevant phenotypes that are adaptive are also complex and thus they are influenced by many underlying loci that interact with the environment. In this study, we quantified the degree of thermal phenotypic plasticity within and among populations by measuring chill‐coma recovery times of lines reared from egg to adult at two different environmental temperatures. We used sixty genotypes from six natural populations of Drosophila melanogaster sampled along a latitudinal gradient in South America. We found significant variation in thermal plasticity both within and among populations. All populations exhibit a cold acclimation response, with flies reared at lower temperatures having increased resistance to cold. We tested a series of environmental parameters against the variation in population mean thermal plasticity and discovered the mean thermal plasticity was significantly correlated with altitude of origin of the population. Pairing our data with previous experiments on viability fitness assays in the same populations in fixed and variable environments suggests an adaptive role of this thermal plasticity in variable laboratory environments. Altogether, these data demonstrate abundant variation in adaptive thermal plasticity within and among populations.  相似文献   

3.
Insects have evolved a number of physiological mechanisms for coping with the detrimental effects of low temperature. As autumn progresses, insects use environmental signals such as shortening day lengths and gradually decreasing temperatures to trigger seasonal cold‐hardening adaptations. These mechanisms include dramatic changes in biochemistry, cell function and gene expression that permit improved cell function and viability at low temperature. Insects are also capable of enhancing cold tolerance on a much shorter time scale, in a process called rapid cold‐hardening (RCH). Rapid cold‐hardening allows insects to improve cold tolerance almost instantaneously (i.e. within minutes to hours) to cope with sudden cold snaps and regularly‐occurring diurnal drops in temperature. Initially, it was assumed that RCH would share many of the same basic mechanisms as seasonal cold‐hardening, albeit on a shorter time scale. Although there is some evidence supporting this, recent work has called into question some of the original hypotheses concerning the mechanisms of RCH. Also, some mechanisms important for seasonal cold‐hardening, such as up‐regulation of stress proteins, are unlikely to function at the temperatures and time scales at which RCH occurs. In the present review, the current understanding of the physiological mechanisms governing both seasonal cold‐hardening and RCH are summarized. A synthesis of the current literature suggests that these two forms of cold‐hardening may be more mechanistically distinct than originally anticipated.  相似文献   

4.
While many insects cannot survive the formation of ice within their bodies, a few species can. On the evolutionary continuum from freeze‐intolerant (i.e., freeze‐avoidant) to freeze‐tolerant insects, intermediates likely exist that can withstand some ice formation, but not enough to be considered fully freeze tolerant. Theory suggests that freeze tolerance should be favored over freeze avoidance among individuals that have low relative fitness before exposure to cold. For phytophagous insects, numerous studies have shown that host (or nutrition) can affect fitness and cold‐tolerance strategy, respectively, but no research has investigated whether changes in fitness caused by different hosts of polyphagous species could lead to systematic changes in cold‐tolerance strategy. We tested this relationship with the invasive, polyphagous moth, Epiphyas postvittana (Walker). Host affected components of fitness, such as larval survivorship rates, pupal mass, and immature developmental times. Host species also caused a dramatic change in survival of late‐instar larvae after the onset of freezing—from less than 8% to nearly 80%. The degree of survival after the onset of freezing was inversely correlated with components of fitness in the absence of cold exposure. Our research is the first empirical evidence of an evolutionary mechanism that may drive changes in cold‐tolerance strategies. Additionally, characterizing the effects of host plants on insect cold tolerance will enhance forecasts of invasive species dynamics, especially under climate change.  相似文献   

5.
Abstract Low desiccation resistance of Drosophila ananassae reflects its rarity outside the humid tropics. However, the ability of this sensitive species to evolve under seasonally varying subtropical areas is largely unknown. D. ananassae flies are mostly lighter during the rainy season but darker and lighter flies occur in the autumn season in northern India. We tested the hypothesis whether seasonally varying alternative body color phenotypes of D. ananassae vary in their levels of environmental stress tolerances and mating behavior. Thus, we investigated D. ananassae flies collected during rainy and autumn seasons for changes in body melanization and their genetic basis, desiccation‐related traits, cold tolerance and mating propensity. On the basis of genetic crosses, we found total body color dimorphism consistent with a single gene model in both sexes of D. ananassae. A significant increase in the frequency of the dark morph was observed during the drier autumn season, and body color phenotypes showed significant deviations from Hardy‐Weinberg equilibrium, which suggests climatic selection plays a role. Resistance to desiccation as well as cold stress were two‐ to three‐fold higher in the dark body color strain as compared with the light strain. On the basis of no‐choice mating experiments, we observed significantly higher assortative matings between dark morphs under desiccation or cold stress, and between light morphs under hot or higher humidity conditions. To the best of our knowledge, this is the first report on the ecological significance of seasonally varying total body color dimorphism in a tropical species, D. ananassae.  相似文献   

6.
To avoid winter frost damage, evergreen coniferous species develop cold hardiness with suitable phenology for the local climate regime. Along the elevational gradient, a genetic cline in autumn phenology is often recognised among coniferous populations, but further quantification of evolutionary adaptation related to the local environment and its responsible signals generating the phenological variation are poorly understood. We evaluated the timing of cold hardening among populations of Abies sachalinensis, based on time series freezing tests using trees derived from four seed source populations × three planting sites. Furthermore, we constructed a model to estimate the development of hardening from field temperatures and the intraspecific variations occurring during this process. An elevational cline was detected such that high‐elevation populations developed cold hardiness earlier than low‐elevation populations, representing significant genetic control. Because development occurred earlier at high‐elevation planting sites, the genetic trend across elevation overlapped with the environmental trend. Based on the trade‐off between later hardening to lengthen the active growth period and earlier hardening to avoid frost damage, this genetic cline would be adaptive to the local climate. Our modelling approach estimated intraspecific variation in two model components: the threshold temperature, which was the criterion for determining whether the trees accumulated the thermal value, and the chilling requirement for trees to achieve adequate cold hardiness. A higher threshold temperature and a lower chilling requirement could be responsible for the earlier phenology of the high‐elevation population. These thermal responses may be one of the important factors driving the elevation‐dependent adaptation of A. sachalinensis.  相似文献   

7.
8.
Freeze tolerance – the ability to survive internal ice formation – has evolved repeatedly in insects, facilitating survival in environments with low temperatures and/or high risk of freezing. Surviving internal ice formation poses several challenges because freezing can cause cellular dehydration and mechanical damage, and restricts the opportunity to metabolise and respond to environmental challenges. While freeze‐tolerant insects accumulate many potentially protective molecules, there is no apparent ‘magic bullet’ – a molecule or class of molecules that appears to be necessary or sufficient to support this cold‐tolerance strategy. In addition, the mechanisms underlying freeze tolerance have been minimally explored. Herein, we frame freeze tolerance as the ability to survive a process: freeze‐tolerant insects must withstand the challenges associated with cooling (low temperatures), freezing (internal ice formation), and thawing. To do so, we hypothesise that freeze‐tolerant insects control the quality and quantity of ice, prevent or repair damage to cells and macromolecules, manage biochemical processes while frozen/thawing, and restore physiological processes post‐thaw. Many of the molecules that can facilitate freeze tolerance are also accumulated by other cold‐ and desiccation‐tolerant insects. We suggest that, when freezing offered a physiological advantage, freeze tolerance evolved in insects that were already adapted to low temperatures or desiccation, or in insects that could withstand small amounts of internal ice formation. Although freeze tolerance is a complex cold‐tolerance strategy that has evolved multiple times, we suggest that a process‐focused approach (in combination with appropriate techniques and model organisms) will facilitate hypothesis‐driven research to understand better how insects survive internal ice formation.  相似文献   

9.
Aspects of the thermal physiology of the water hyacinth biological control agent Eccritotarsus catarinensis Carvalho (Hemiptera: Miridae) have been extensively investigated over the past 20 years to understand and improve post‐release establishment in the field. Thermal physiology studies predicted that the agent would not establish at a number of cold sites in South Africa, where it has nonetheless subsequently established and thrived. Recently, studies have begun to incorporate the plastic nature of insect thermal physiology into models of agent establishment. This study determined whether season and locality influenced the thermal physiology of two field populations of E. catarinensis, one collected from the hottest site where the agent has established in South Africa, and one from the coldest site. The thermal physiology of E. catarinensis was significantly influenced by season and site, demonstrating a degree of phenotypic plasticity, and that some post‐release local adaptation to climatic conditions has occurred through microevolution. We then determined whether cold acclimation under laboratory conditions was possible. Successfully cold‐acclimated E. catarinensis had a significantly lower critical thermal minimum (CTmin) compared to the field cold‐acclimated population. This suggests that cold acclimation of agents could be conducted in the laboratory before future releases to improve their cold tolerance, thereby increasing their chance of establishment at cold sites and allowing further adaptation to colder climates to occur in the field. Although the thermal tolerance of E. catarinensis is limited by local adaptations to climatic conditions in the native range, the plastic nature of the insect's thermal physiology has allowed it to survive in the very different climatic conditions of the introduced range, and there has been some adaptive change to the insect's thermal tolerance since establishment. This study highlights the importance of plasticity and microevolutionary processes in the success of biological control agents under the novel climatic conditions in the introduced range.  相似文献   

10.
  1. Overwintering Drosophila often display adaptive phenotypic differences beneficial for survival at low temperatures. However, it is unclear which morphological traits are the best estimators of abiotic conditions, how those traits are correlated with functional outcomes in cold tolerance, and whether there are regional differences in trait expression.
  2. We used a combination of controlled laboratory assays, and collaborative field collections of invasive Drosophila suzukii in different areas of the United States, to study the factors affecting phenotype variability of this temperate fruit pest now found globally.
  3. Laboratory studies demonstrated that winter morph (WM) trait expression is continuous within the developmental temperature niche of this species (10–25°C) and that wing length and abdominal melanization are the best predictors of the larval abiotic environment.
  4. However, the duration and timing of cold exposure also produced significant variation in development time, morphology, and survival at cold temperatures. During a stress test assay conducted at ?5°C, although cold tolerance was greater among WM flies, long‐term exposure to cold temperatures as adults significantly improved summer morph (SM) survival, indicating that these traits are not controlled by a single mechanism.
  5. Among wild D. suzukii populations, we found that regional variation in abiotic conditions differentially affects the expression of morphological traits, although further research is needed to determine whether these differences are genetic or environmental in origin and whether thermal susceptibility thresholds differ among populations within its invaded range.
  相似文献   

11.
Geographic variation in parasite communities can drive evolutionary divergence in host immune genes. However, biotic and abiotic environmental variation can also induce plastic differences in immune function among populations. At present, there is little information concerning the relative magnitudes of heritable vs. induced immune divergence in natural populations. We examined immune gene expression profiles of threespine stickleback (Gasterosteus aculeatus) from six lakes on Vancouver Island, British Columbia. Parasite community composition differs between lake types (large or small, containing limnetic‐ or benthic‐like stickleback) and between watersheds. We observed corresponding differences in immune gene expression profiles among wild‐caught stickleback, using a set of seven immune genes representing distinct branches of the immune system. To evaluate the role of environmental effects on this differentiation, we experimentally transplanted wild‐caught fish into cages in their native lake, or into a nearby foreign lake. Transplanted individuals' immune gene expression converged on patterns typical of their destination lake, deviating from their native expression profile. Transplant individuals' source population had a much smaller effect, suggesting relatively weak genetic underpinning of population differences in immunity, as viewed through gene expression. This strong environmental regulation of immune gene expression provides a counterpoint to the large emerging literature documenting microevolution and genetic diversification of immune function. Our findings illustrate the value of studying immunity in natural environmental settings where the immune system has evolved and actively functions.  相似文献   

12.
Environmental seasonality is a potent evolutionary force, capable of maintaining polymorphism, promoting phenotypic plasticity and causing bet-hedging. In Drosophila, environmental seasonality has been reported to affect life-history traits, tolerance to abiotic stressors and immunity. Oscillations in frequencies of alleles underlying fitness-related traits were also documented alongside SNPs across the genome. Here, we test for seasonal changes in two recombination characteristics, crossover rate and crossover interference, in a natural D. melanogaster population from India using morphological markers of the three major chromosomes. We show that winter flies, collected after the dry season, have significantly higher desiccation tolerance than their autumn counterparts. This difference proved to hold also for hybrids with three independent marker stocks, suggesting its genetic rather than plastic nature. Significant between-season changes are documented for crossover rate (in 9 of 13 studied intervals) and crossover interference (in four of eight studied pairs of intervals); both single and double crossovers were usually more frequent in the winter cohort. The winter flies also display weaker plasticity of both recombination characteristics to desiccation. We ascribe the observed differences to indirect selection on recombination caused by directional selection on desiccation tolerance. Our findings suggest that changes in recombination characteristics can arise even after a short period of seasonal adaptation (~8–10 generations).Subject terms: Structural variation, Evolutionary biology, Evolutionary genetics  相似文献   

13.
The distribution of insects can often be related to variation in their response to thermal extremes, which in turn may reflect differences in plastic responses or innate variation in resistance. Species with widespread distributions are expected to have evolved higher levels of plasticity than those from restricted tropical areas. This study compares adult thermal limits across five widespread species and five restricted tropical species of Drosophila from eastern Australia and investigates how these limits are affected by developmental acclimation and hardening after controlling for environmental variation and phylogeny. Irrespective of acclimation, cold resistance was higher in the widespread species. Developmental cold acclimation simulating temperate conditions extended cold limits by 2°-4°C, whereas developmental heat acclimation under simulated tropical conditions increased upper thermal limits by <1°C. The response to adult heat-hardening was weak, whereas widespread species tended to have a larger cold-hardening response that increased cold tolerance by 2°-5°C. These patterns persisted after phylogenetic correction and when flies were reared under high and low constant temperatures. The results do not support the hypothesis that widely distributed species have larger phenotypic plasticity for thermal tolerance limits, and Drosophila species distributions are therefore more closely linked to differences in innate thermal tolerance limits.  相似文献   

14.
Many organisms advance their seasonal reproduction in response to global warming. In birds, which regress their gonads to a nonfunctional state each winter, these shifts are ultimately constrained by the time required for gonadal development in spring. Gonadal development is photoperiodically controlled and shows limited phenotypic plasticity in relation to environmental factors, such as temperature. Heritable variation in the time required for full gonadal maturation to be completed, based on both onset and speed of development and resulting in seasonally different gonad sizes among individuals, is thus a crucial prerequisite for an adaptive advancement of seasonal reproduction in response to changing temperatures. We measured seasonal gonadal development in climate‐controlled aviaries for 144 great tit (Parus major) pairs, which consisted of siblings obtained as whole broods from the wild. We show that the extent of ovarian follicle development (follicle size) in early spring is highly heritable (h2 = 0.73) in females, but found no heritability of the extent of testis development in males. However, heritability in females decreased as spring advanced, caused by an increase in environmental variance and a decrease in additive genetic variation. This low heritability of the variation in a physiological mechanism underlying reproductive timing at the time of selection may hamper genetic adaptation to climate change, a key insight as this great tit population is currently under directional selection for advanced egg‐laying.  相似文献   

15.
The success of conifers over much of the world's terrestrial surface is largely attributable to their tolerance to cold stress (i.e., cold hardiness). Due to an increase in climate variability, climate change may reduce conifer cold hardiness, which in turn could impact ecosystem functioning and productivity in conifer‐dominated forests. The expression of cold hardiness is a product of environmental cues (E), genetic differentiation (G), and their interaction (G × E), although few studies have considered all components together. To better understand and manage for the impacts of climate change on conifer cold hardiness, we conducted a common garden experiment replicated in three test environments (cool, moderate, and warm) using 35 populations of coast Douglas‐fir (Pseudotsuga menziesii var. menziesii) to test the hypotheses: (i) cool‐temperature cues in fall are necessary to trigger cold hardening, (ii) there is large genetic variation among populations in cold hardiness that can be predicted from seed‐source climate variables, (iii) observed differences among populations in cold hardiness in situ are dependent on effective environmental cues, and (iv) movement of seed sources from warmer to cooler climates will increase risk to cold injury. During fall 2012, we visually assessed cold damage of bud, needle, and stem tissues following artificial freeze tests. Cool‐temperature cues (e.g., degree hours below 2 °C) at the test sites were associated with cold hardening, which were minimal at the moderate test site owing to mild fall temperatures. Populations differed 3‐fold in cold hardiness, with winter minimum temperatures and fall frost dates as strong seed‐source climate predictors of cold hardiness, and with summer temperatures and aridity as secondary predictors. Seed‐source movement resulted in only modest increases in cold damage. Our findings indicate that increased fall temperatures delay cold hardening, warmer/drier summers confer a degree of cold hardiness, and seed‐source movement from warmer to cooler climates may be a viable option for adapting coniferous forest to future climate.  相似文献   

16.
When ectotherms are exposed to low temperatures, they enter a cold‐induced coma (chill coma) that prevents resource acquisition, mating, oviposition, and escape from predation. There is substantial variation in time taken to recover from chill coma both within and among species, and this variation is correlated with habitat temperatures such that insects from cold environments recover more quickly. This suggests an adaptive response, but the mechanisms underlying variation in recovery times are unknown, making it difficult to decisively test adaptive hypotheses. We use replicated lines of Drosophila melanogaster selected in the laboratory for fast (hardy) or slow (susceptible) chill‐coma recovery times to investigate modifications to metabolic profiles associated with cold adaptation. We measured metabolite concentrations of flies before, during, and after cold exposure using nuclear magnetic resonance (NMR) spectroscopy to test the hypotheses that hardy flies maintain metabolic homeostasis better during cold exposure and recovery, and that their metabolic networks are more robust to cold‐induced perturbations. The metabolites of cold‐hardy flies were less cold responsive and their metabolic networks during cold exposure were more robust, supporting our hypotheses. Metabolites involved in membrane lipid synthesis, tryptophan metabolism, oxidative stress, energy balance, and proline metabolism were altered by selection on cold tolerance. We discuss the potential significance of these alterations.  相似文献   

17.
Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions.  相似文献   

18.
Poecilogonous species show variation in developmental mode, with larvae that differ both morphologically and ecologically. The spionid polychaete Pygospio elegans shows variation in developmental mode not only between populations, but also seasonally within populations. We investigated the consequences of this developmental polymorphism on the spatial and seasonal genetic structure of P. elegans at four sites in the Danish Isefjord‐Roskilde‐Fjord estuary at six time points, from March 2014 until February 2015. We found genetic differentiation between our sampling sites as well as seasonal differentiation at two of the sites. The seasonal genetic shift correlated with the appearance of new size cohorts in the populations. Additionally, we found that the genetic composition of reproductive individuals did not always reflect the genetic composition of the entire sample, indicating that variance in reproductive success among individuals is a likely explanation for the patterns of chaotic genetic patchiness observed during this and previous studies. The heterogeneous, unpredictable character of the estuary might maintain poecilogony in P. elegans as a bet‐hedging strategy in the Isefjord‐Roskilde‐Fjord complex in comparison with other sites where P. elegans are expected to be fixed to a certain mode of development.  相似文献   

19.
Climatic variability and the evolution of insect freeze tolerance   总被引:9,自引:0,他引:9  
Insects may survive subzero temperatures by two general strategies: Freeze-tolerant insects withstand the formation of internal ice, while freeze-avoiding insects die upon freezing. While it is widely recognized that these represent alternative strategies to survive low temperatures, and mechanistic understanding of the physical and molecular process of cold tolerance are becoming well elucidated, the reasons why one strategy or the other is adopted remain unclear. Freeze avoidance is clearly basal within the arthropod lineages, and it seems that freeze tolerance has evolved convergently at least six times among the insects (in the Blattaria, Orthoptera, Coleoptera, Hymenoptera, Diptera and Lepidoptera). Of the pterygote insect species whose cold-tolerance strategy has been reported in the literature, 29% (69 of 241 species studied) of those in the Northern Hemisphere, whereas 85 % (11 of 13 species) in the Southern Hemisphere exhibit freeze tolerance. A randomization test indicates that this predominance of freeze tolerance in the Southern Hemisphere is too great to be due to chance, and there is no evidence of a recent publication bias in favour of new reports of freeze-tolerant species. We conclude from this that the specific nature of cold insect habitats in the Southern Hemisphere, which are characterized by oceanic influence and climate variability must lead to strong selection in favour of freeze tolerance in this hemisphere. We envisage two main scenarios where it would prove advantageous for insects to be freeze tolerant. In the first, characteristic of cold continental habitats of the Northern Hemisphere, freeze tolerance allows insects to survive very low temperatures for long periods of time, and to avoid desiccation. These responses tend to be strongly seasonal, and insects in these habitats are only freeze tolerant for the overwintering period. By contrast, in mild and unpredictable environments, characteristic of habitats influenced by the Southern Ocean, freeze tolerance allows insects which habitually have ice nucleators in their guts to survive summer cold snaps, and to take advantage of mild winter periods without the need for extensive seasonal cold hardening. Thus, we conclude that the climates of the two hemispheres have led to the parallel evolution of freeze tolerance for very different reasons, and that this hemispheric difference is symptomatic of many wide-scale disparities in Northern and Southern ecological processes.  相似文献   

20.
Coping with seasonal and daily variation in environmental conditions requires that organisms are able to adjust their reproduction and stress tolerance according to environmental conditions. Females of Drosophila montana populations have adapted to survive over the dark and cold winters at high latitudes and altitudes by spending this season in photoperiodically controlled reproductive diapause and reproducing only in spring/summer. The present study showed that flies of a northern population of this species are quite tolerant of low temperatures and show high seasonal and short-term plasticity in this trait. Culturing the flies in short day length (nearly all females in reproductive diapause), as well as allowing the flies to get cold hardened before the cold treatment, increased the cold tolerance of both sexes both in chill coma recovery time test and in mortality assay. Chill coma recovery time test performed for the females of two additional D. montana populations cultured in a day length where about half of the females enter diapause, also showed that diapause can increase female cold tolerance even without a change in day length. Direct linkage between diapause and cold tolerance was found in only two strains representing a high-altitude population of the species, but the phenomenon will certainly be worth of studying in northern and southern populations of the species with larger data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号