首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hermaphroditic animals face the fundamental evolutionary optimization problem of allocating their resources to their male vs. female reproductive function (e.g. testes and sperm vs. ovaries and eggs), and this optimal sex allocation can be affected by both pre‐ and post‐copulatory sexual selection. For example, local sperm competition (LSC) – the competition between related sperm for the fertilization of a partner's ova – occurs in small mating groups and can favour a female‐biased sex allocation, because, under LSC, investment into sperm production is predicted to show diminishing fitness returns. Here, we test whether higher testis investment increases an individual's paternity success under sperm competition, and whether the strength of this effect diminishes when LSC is stronger, as predicted by sex allocation theory. We created two subsets of individuals of the simultaneously hermaphroditic flatworm Macrostomum lignano – by sampling worms from either the highest or lowest quartile of the testis investment distribution – and estimated their paternity success in group sizes of either three (strong LSC) or eight individuals (weak LSC). Specifically, using transgenic focal individuals expressing a dominant green‐fluorescent protein marker, we showed that worms with high testis investment sired 22% more offspring relative to those with low investment, corroborating previous findings in M. lignano and other species. However, the strength of this effect was not significantly modulated by the experienced group size, contrasting theoretical expectations of more strongly diminishing fitness returns under strong LSC. We discuss the possible implications for the evolutionary maintenance of hermaphroditism in M. lignano.  相似文献   

2.
The free-living flatworm Macrostomum lignano is used as a model in a range of research fields—including aging, bioadhesion, stem cells, and sexual selection—culminating in the establishment of genome assemblies and transgenics. However, the Macrostomum community has run into a roadblock following the discovery of an unusual genome organization in M. lignano, which could now impair the development of additional resources and tools. Briefly, M. lignano has undergone a whole-genome duplication, followed by rediploidization into a 2n = 8 karyotype (distinct from the canonical 2n = 6 karyotype in the genus). Although this karyotype appears visually diploid, it is in fact a hidden tetraploid (with rarer 2n = 9 and 2n = 10 individuals being pentaploid and hexaploid, respectively). Here, we report on a phylogenetically informed search for close relatives of M. lignano, aimed at uncovering alternative Macrostomum models with the canonical karyotype and a simple genome organization. We taxonomically describe three new species: the first, Macrostomum janickei n. sp., is the closest known relative of M. lignano and shares its derived genome organization; the second, Macrostomum mirumnovem n. sp., has an even more unusual genome organization, with a highly variable karyotype based on a 2n = 9 base pattern; and the third, Macrostomum cliftonensis n. sp., does not only show the canonical 2n = 6 karyotype, but also performs well under standard laboratory culture conditions and fulfills many other requirements. M. cliftonensis is a viable candidate for replacing M. lignano as the primary Macrostomum model, being outcrossing and having an estimated haploid genome size of only 231 Mbp.  相似文献   

3.
4.
Sexual selection is considered a potent evolutionary force in all sexually reproducing organisms, but direct tests in terms of experimental evolution of sexual traits are still lacking for simultaneously hermaphroditic animals. Here, we tested how evolution under enforced monogamy affected a suite of reproductive traits (including testis area, sex allocation, genital morphology, sperm morphology and mating behaviour) in the outcrossing hermaphroditic flatworm Macrostomum lignano, using an assay that also allowed the assessment of phenotypically plastic responses to group size. The experiment comprised 32 independent selection lines that evolved under either monogamy or polygamy for 20 generations. While we did not observe an evolutionary shift in sex allocation, we detected effects of the selection regime for two male morphological traits. Specifically, worms evolving under enforced monogamy had a distinct shape of the male copulatory organ and produced sperm with shorter appendages. Many traits that did not evolve under enforced monogamy showed phenotypic plasticity in response to group size. Notably, individuals that grew up in larger groups had a more male‐biased sex allocation and produced slightly longer sperm than individuals raised in pairs. We conclude that, in this flatworm, enforced monogamy induced moderate evolutionary but substantial phenotypically plastic responses.  相似文献   

5.
6.
Evolutionary theory predicts that males should produce more sperm when sperm competition is high. Because sperm production rate is difficult to measure in most organisms, comparative and experimental studies have typically used testis size instead, while assuming a good correspondence between testis size and sperm production rate. Here we evaluate this common assumption using the marine flatworm Macrostomum lignano, in which we can estimate sperm production rate because the accumulation of produced sperm can be observed in vivo. In earlier studies we have shown that testis size is phenotypically plastic in M. lignano: worms can be induced to make larger testes by raising them in groups instead of pairs, and these larger testes have a higher cell proliferation activity (i.e. they are more energetically costly). Here we demonstrate that worms with such experimentally enlarged testes have a higher sperm production rate. Moreover, although testis size and sperm production rate were related linearly, worms with experimentally enlarged testes had a higher sperm production rate per unit testis size (i.e. a higher spermatogenic efficiency). We thus show that phenotypically plastic adjustment of sperm production rate includes a component that is independent of testis size. We discuss possible reasons for this novel finding, and suggest that the relationship between testis size and sperm production needs to be evaluated in other species as well.  相似文献   

7.
Sex allocation theory is considered as a touchstone of evolutionary biology, providing some of the best supported examples for Darwinian adaptation. In particular, Hamilton's local mate competition theory has been shown to generate precise predictions for extraordinary sex ratios observed in many separate‐sexed organisms. In analogy to local mate competition, Charnov's mating group size model predicts how sex allocation in simultaneous hermaphrodites is affected by the mating group size (i.e., the number of mating partners plus one). Until now, studies have not directly explored the relationship between mating group size and sex allocation, which we here achieve in the simultaneously hermaphroditic flatworm Macrostomum lignano. Using transgenic focal worms with ubiquitous expression of green‐fluorescent protein (GFP), we assessed the number of wild‐type mating partners carrying GFP+ sperm from these focal worms when raised in different social group sizes. This allowed us to test directly how mating group size was related to the sex allocation of focal worms. We find that the proportion of male investment initially increases with increasing mating group size, but then saturates as predicted by theory. To our knowledge, this is the first direct test of the mating group size model in a simultaneously hermaphroditic animal.  相似文献   

8.
Classical sexual selection theory assumes that the reproductive success of females is primarily limited by the resources available for egg production rather than by the number of mating partners. However, there is now accumulating evidence that multiple mating can entail fitness costs or benefits for females. In this study we investigated the effect of polyandry (i.e., the mating with different mating partners) and food availability on the reproductive output of the female sex function in an outcrossing simultaneous hermaphrodite, the free-living flatworm Macrostomum lignano. We exposed virgin worms to different group sizes, a treatment that has previously been shown to affect the level of polyandry in this species. Moreover, we manipulated the food availability throughout the subsequent egg laying period, during which the worms were kept in isolation. The number of offspring produced was used as an estimate of female fecundity. We found that food availability, but not group size, had a significant effect on female fecundity. Additionally, female fecundity was positively correlated with the number of stored sperm in the female sperm-storage organ at the time of isolation, but it was not correlated with body or ovary size of the worms. Our results suggest that female fecundity in M. lignano is primarily determined by the resources available for egg production, and not by the level of polyandry, confirming classic sexual selection theory for simultaneous hermaphrodites.  相似文献   

9.
Males of many species evolved the capability of adjusting their ejaculate phenotype in response to social cues to match the expected mating conditions. When females store sperm for a prolonged time, the expected fitness return of plastic adjustments of ejaculate phenotype may depend on the interval between mating and fertilization. Although prolonged female sperm storage (FSS) increases the opportunity for sperm competition, as a consequence of the longer temporal overlap of ejaculates from several males, it may also create variable selective forces on ejaculate phenotype, for example by exposing trade‐offs between sperm velocity and sperm survival. We evaluated the relationship between the plasticity of ejaculate quality and FSS in the guppy, Poecilia reticulata, a polyandrous live‐bearing fish in which females store sperm for several months and where stored sperm contribute significantly to a male's lifelong reproductive success. In this species, males respond to the perception of future mating opportunities by increasing the quantity (number) and quality (swimming velocity) of ready‐to‐use sperm (an anticipatory response called ‘sperm priming’). Here we investigated (a) the effect of sperm priming on in vitro sperm viability at stripping and its temporal decline (as an estimate of sperm survival), and (b) the in vivo competitive fertilization success in relation to female sperm storage using artificial insemination. As expected, sperm‐primed males produced more numerous and faster sperm, but with a reduced in vitro sperm viability at stripping and after 4 hr, compared with their counterparts. Artificial insemination revealed that the small (nonsignificant) advantage of primed sperm when fertilization immediately follows insemination is reversed when eggs are fertilized by female‐stored sperm, weeks after insemination. By suggesting a plastic trade‐off between sperm velocity and viability, these results demonstrate that prolonged female sperm storage generates divergent selection pressures on ejaculate phenotype.  相似文献   

10.
Evolutionary theory predicts an influence of mating group size on sex allocation in simultaneous hermaphrodites. We experimentally manipulated the social situation during reproduction in a simultaneous hermaphrodite parasite, the tapeworm Schistocephalus solidus, by placing worms as singles, pairs or triplets into an in vitro system that replaces the final host. We then determined the reproductive allocation patterns after 24 h (i.e. before the start of egg release) and after 72 h (i.e. around the peak of egg release rate) using stereology. After 24 h, sex allocation strongly depended on worm volume (which is determined in the second intermediate host), but was not significantly affected by the social situation experienced during reproduction. After 72 h, worms in groups had less vesicular sperm (i.e. sperm to be used in future inseminations) than singles. They also stored significantly more received sperm in their seminal receptacles than singles, suggesting that more sperm had been transferred in groups. Moreover, worms in triplets stored significantly more received sperm than worms in pairs, suggesting that they either mated more often and/or transferred more sperm per mating. This suggests a behavioural response to the increased risk of sperm competition in triplets. We further discuss the relative importance of sex allocation decisions at different life‐history stages.  相似文献   

11.
Female damselflies in the family Calopterygidae have two sperm storage organs: a spherical bursa copulatrix and a tubular spermatheca. Male flies have a peculiar aedeagus with a recurved head with which to remove bursal sperm, and lateral spiny processes to remove spermathecal sperm. The lateral processes differ among species and populations in terms of their width relative to the spermathecal duct: the narrower processes are physically able to access spermathecal sperm, while the wider ones are not. In the present study, sperm storage patterns and aedeagal structures were compared between two calopterygid species with different spermathecal structures –Calopteryx cornelia and Mnais pruinosa– with respect to not only sperm quantity (number) but also sperm quality (viability), by using a recently developed method based on live/dead dual fluorescence. Calopteryx cornelia is a typical spermathecal sperm remover. In this species, viability was similar between bursal and spermathecal sperm. In contrast, in M. pruinosa, the spermatheca was much smaller than the bursa and often contained no sperm. Even when the spermatheca of this species did contain sperm, a high percentage of it was dead. Although the spermatheca of M. pruinosa has such atrophic tendencies, males have nevertheless developed long and spiny lateral processes similar to those of C. cornelia, suggesting the processes have functions other than spermathecal sperm removal. They possibly function as stoppers or guides for manipulating the aedeagal head to remove the sperm mass from the bursa.  相似文献   

12.
The seminal fluid proteins (SFPs) transferred to mating partners along with sperm often play crucial roles in mediating post‐mating sexual selection. One way in which sperm donors can maximize their own reproductive success is by modifying the partner's (sperm recipient's) post‐copulatory behaviour to prevent or delay re‐mating, thereby decreasing the likelihood or intensity of sperm competition. Here, we adopted a quantitative genetic approach combining gene expression and behavioural data to identify candidates that could mediate such a response in the simultaneously hermaphroditic flatworm Macrostomum lignano. We identified two putative SFPs—Mlig‐pro46 and Mlig‐pro63—linked to both mating frequency and ‘suck’ frequency, a distinctive behaviour, in which, upon ejaculate receipt, the worm places its pharynx over its female genital opening and apparently attempts to remove the received ejaculate. We, therefore, performed a manipulative experiment using RNA interference‐induced knockdown to ask how the loss of Mlig‐pro46 and Mlig‐pro63 expression, singly and in combination, affects mating frequency, partner suck propensity and sperm competitive ability. None of the knockdown treatments impacted strongly on the mating frequency or sperm competitive ability, but knockdown of Mlig‐pro63 resulted in a significantly decreased suck propensity of mating partners. This suggests that Mlig‐pro63 may normally act as a cue in the ejaculate to trigger recipient suck behaviour and—given that other proteins in the ejaculate have the opposite effect—could be one component of an ongoing arms race between donors and recipients over the control of ejaculate fate. However, the adaptive significance of Mlig‐pro46 and Mlig‐pro63 from a donor perspective remains enigmatic.  相似文献   

13.
Males in many taxa exhibit behavioural plasticity in response to the perceived threat of sperm competition. Drosophila males prolong mating in response to the presence of competitor males before copulation. The benefits of this behaviour to males are evident in Drosophila melanogaster. However, the adaptive nature of the trait is challenged by the observation that it is present in four other Drosophila species, two of which are largely monandrous, raising the possibility that this plasticity is not evolutionarily labile. In the present study, behavioural plasticity and the mating system in Drosophila bifasciata Pominini (Diptera, Drosophilidae) are analyzed. By contrast to other Drosophila species, male D. bifasciata do not exhibit plasticity in copulation duration when competitor males are present before mating. Thus, plasticity in mating duration is not fixed in the genus Drosophila. The mating system of D. bifasciata is also examined. The species is polyandrous but, uncommonly for the genus Drosophila, males transfer a mating plug composed of sperm to females, which forms very shortly after copulation and fills the female uterus. The absence of plasticity observed in D. bifasciata may arise from the sperm plug.  相似文献   

14.
In the absence of sperm competition evolutionary theory predicts low mating rates and low ejaculate expenditure per mating, and sex allocation theory for simultaneous hermaphrodites predicts a strongly female‐biased sex allocation. In the presence of sperm competition a shift towards a more male‐biased sex allocation and a higher ejaculate expenditure are predicted. The free‐living flatworm Macrostomum lignano has been shown to respond plastically in mating rate, testis size, and sperm transfer to manipulation of the social group size, a proxy of the strength of sperm competition. However, manipulation of social group size may manipulate not only sperm competition, but also other factors, such as food supply and metabolite concentration. In this study we therefore manipulated sperm competition per se by repeatedly exposing individuals to partners that have either mated with rivals or not, while keeping the social group size constant. Our results suggest that M. lignano does not have the ability to detect sperm competition per se, as worms experimentally exposed to the presence or absence of sperm competition did not differ in sex allocation, sperm transfer or mating behavior. A response to our manipulation would have required individual recognition, the ability to detect self‐referencing tags, or tags or traces left by rivals on or in the mating partners. We first discuss the possibility that highly efficient sperm displacement may have decreased the difference between the treatment groups and then propose three alternative cues that may allow M. lignano to respond plastically to the social group size manipulation used in earlier studies: assessment of the mating rate, chemical cues, or tactile cues.  相似文献   

15.
16.
Evolutionary theory predicts that in the absence of outcrossing opportunities, simultaneously hermaphroditic organisms should eventually switch to self‐fertilization as a form of reproductive assurance. Here, we report the existence of facultative self‐fertilization in the free‐living flatworm Macrostomum hystrix, a species in which outcrossing occurs via hypodermic insemination of sperm into the parenchyma of the mating partner. First, we show that isolated individuals significantly delay the onset of reproduction compared with individuals with outcrossing opportunities (‘delayed selfing’) as predicted by theory. Second, consistent with the idea of M. hystrix being a preferential outcrosser under natural conditions, we report likely costs of selfing manifested via reduced hatchling production and offspring survival. Third, we demonstrate that selfing propensity has a genetic basis in this species, with a heritability estimated at 0.43 ± 0.11. Variation in selfing propensity could arise due to differing costs of inbreeding among families; despite marked inter‐family variation in apparent costs of inbreeding, we found no evidence for such a link. Alternatively, selfing propensity might differ across families because of heritable variation in reproductive traits that determine the likelihood of selfing. We speculate that adaptations to hypodermic insemination under outcrossing, most notably a highly modified copulatory stylet (male copulatory organ) and reduced sperm complexity, could also facilitate facultative selfing in this species.  相似文献   

17.
In species with direct sperm transfer, copulation duration is a crucial trait that may affect male and female reproductive success and that may vary with the quality of the mating partner. Furthermore, traits such as copulation duration represent the outcome of behavioral interactions between the sexes, for which it is important—but often difficult—to determine which sex is in phenotypic control. Using a double‐mating protocol, we compared copulation durations between (1) virgin and nonvirgin and (2) sibling and nonsibling mating pairs in rufous grasshoppers Gomphocerippus rufus. Nonvirgin copulations took on average approximately 30% longer than virgin copulations, whereas relatedness of mating partners was not a significant predictor of copulation duration. Longer nonvirgin copulations may represent a male adaptation to sperm competition if longer copulations allow more sperm to be transferred or function as postinsemination mate guarding. The absence of differences between pairs with different degrees of relatedness suggests no precopulatory or preinsemination inbreeding avoidance mechanism has evolved in this species, perhaps because there is no inbreeding depression in this species, or because inbreeding avoidance occurs after copulation. Controlling for the effects of male and female mating status (virgin vs. nonvirgin) and relatedness (sibling vs. nonsibling), we found significant repeatabilities (R) in copulation duration for males (R = 0.33; 95% CI: 0.09–0.55) but not for females (R = 0.09; 95% CI: 0.00–0.30). Thus, copulation durations of males more strongly represent a nontransient trait expressed in a consistent manner with different mating partners, suggesting that some aspect of the male phenotype may determine copulation duration in this species. However, overlapping confidence intervals for our sex‐specific repeatability estimates indicate that higher sampling effort is required for conclusive evidence.  相似文献   

18.
Sexual selection operates through consecutive episodes of selection that ultimately contribute to the observed variance in reproductive success between individuals. Understanding the relative importance of these episodes is challenging, particularly because the relevant postcopulatory fitness components are often difficult to assess. Here, we investigate different episodes of sexual selection on the male sex function, by assessing how (precopulatory) mating success, and (postcopulatory) sperm‐transfer efficiency and sperm‐fertilizing efficiency contribute to male reproductive success. Specifically, we used a transgenic line of the transparent flatworm, Macrostomum lignano, which expresses green fluorescent protein (GFP) in all cell types, including sperm cells, enabling in vivo sperm tracking and paternity analysis. We found that a large proportion of variance in male reproductive success arose from the postcopulatory episodes. Moreover, we also quantified selection differentials on 10 morphological traits. Testis size and seminal vesicle size showed significant positive selection differentials, which were mainly due to selection on sperm‐transfer efficiency. Overall, our results demonstrate that male reproductive success in M. lignano is not primarily limited by the number of matings achieved, but rather by the ability to convert matings into successful fertilizations, which is facilitated by producing many sperm.  相似文献   

19.
We previously determined changes in sperm quality of Psammoperca waigiensis during its spawning season and the optimal cation concentrations and osmolality for sperm preservation of this species at the peak of the reproductive season. In this study, we went one important step further by assessing the effects of the most adequate medium, considering the dilution ratio, osmolality, and cations (Na+, K+, Mg2+, and Ca2+) on the motility of P. wasigiensis sperm collected during the early, peak, and late spawning season. We determined the maximum velocity (VAP), and percentage of sperm motility (MOT), and the duration of sperm motility (DSM). Under optimal dilution, temperature, pH and osmolarity, MOT, VAP, and DSM did not statistically differ during early, peak, and late spawning season. However, under suboptimal external conditions, MOT, VAP, and DSM showed inconsistent trends during different spawning periods. We recommend using one of three different artificial motile activating media: (1) 0.55 M Na+, (2) 0.6 M K+ or (3) 1200 mOsm/kg for early; or (1) 0.6 M Na+, (2) 0.6 M K+ or (3) 1100 mOsm/kg for the peak; and (1) 0.65 M Na+, (2) 0.55 M K+ or (3) 1200 mOsm/kg for late spawning season; all at the dilution of 1:150 (v:v of semen: artificial motile activating medium).  相似文献   

20.
In externally fertilizing species, the gametes of both males and females are exposed to the influences of the environment into which they are released. Sperm are sensitive to abiotic factors such as salinity, but they are also affected by biotic factors such as sperm competition. In this study, the authors compared the performance of sperm of three goby species, the painted goby, Pomatoschistus pictus, the two-spotted goby, Pomatoschistus flavescens, and the sand goby, Pomatoschistus minutus. These species differ in their distributions, with painted goby having the narrowest salinity range and sand goby the widest. Moreover, data from paternity show that the two-spotted goby experiences the least sperm competition, whereas in the sand goby sperm competition is ubiquitous. The authors took sperm samples from dissected males and exposed them to high salinity water (31 PSU) representing the North Sea and low salinity water (6 PSU) representing the brackish Baltic Sea Proper. They then used computer-assisted sperm analysis to measure the proportion of motile sperm and sperm swimming speed 10 min and 20 h after sperm activation. The authors found that sperm performance depended on salinity, but there seemed to be no relationship to the species' geographical distribution in relation to salinity range. The species differed in the proportion of motile sperm, but there was no significant decrease in sperm motility during 20 h. The sand goby was the only species with motile sperm after 72 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号