首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Comparisons of host and parasite phylogenies often show varying degrees of phylogenetic congruence. However, few studies have rigorously explored the factors driving this variation. Multiple factors such as host or parasite morphology may govern the degree of phylogenetic congruence. An ideal analysis for understanding the factors correlated with congruence would focus on a diverse host–parasite system for increased variation and statistical power. In this study, we focused on the Brueelia-complex, a diverse and widespread group of feather lice that primarily parasitise songbirds. We generated a molecular phylogeny of the lice and compared this tree with a phylogeny of their avian hosts. We also tested for the contribution of each host–parasite association to the overall congruence. The two trees overall were significantly congruent, but the contribution of individual associations to this congruence varied. To understand this variation, we developed a novel approach to test whether host, parasite or biogeographic factors were statistically associated with patterns of congruence. Both host plumage dimorphism and parasite ecomorphology were associated with patterns of congruence, whereas host body size, other plumage traits and biogeography were not. Our results lay the framework for future studies to further elucidate how these factors influence the process of host–parasite coevolution.  相似文献   

2.
Host shifts can cause novel infectious diseases, and is a key process in diversification. Disentangling the effects of host shift vs. those of cospeciation is non‐trivial as both can result in phylogenic congruence. We develop a new framework based on network analysis and Approximate Bayesian Computation to quantify host shift and cospeciation rates in host‐parasite systems. Our method enables estimation of the expected time to the next host shift or cospeciation event. We then apply it to avian haemosporidian parasite systems and to the pocket gophers‐chewing lice system, and demonstrate that both host shift and cospeciation can be reliably estimated by our method. We confirm that host shifts have shaped the evolutionary history of avian haemosporidian parasites and have played a minor role in the gopher–chewing lice system. Our method is promising for predicting the rate of potential host shifts and thus the emergence of novel infectious diseases.  相似文献   

3.
Host–symbiont relationships are ubiquitous in nature, yet evolutionary and ecological processes that shape these intricate associations are often poorly understood. All orders of birds engage in symbioses with feather mites, which are ectosymbiotic arthropods that spend their entire life on hosts. Due to their permanent obligatory association with hosts, limited dispersal and primarily vertical transmission, we hypothesized that the cospeciation between feather mites and hosts within one avian family (Parulidae) would be perfect (strict cospeciation). We assessed cophylogenetic patterns and tested for congruence between species in two confamiliar feather mite genera (Proctophyllodidae: Proctophyllodes, Amerodectes) found on 13 species of migratory warblers (and one other closely related migratory species) in the eastern United States. Based on COI sequence data, we found three Proctophyllodes lineages and six Amerodectes lineages. Distance‐ and event‐based cophylogenetic analyses suggested different cophylogenetic trajectories of the two mite genera, and although some associations were significant, there was little overall evidence supporting strict cospeciation. Host switching is likely responsible for incongruent phylogenies. In one case, we documented prairie warblers Setophaga discolor harboring two mite species of the same genus. Most interestingly, we found strong evidence that host ecology may influence the likelihood of host switching occurring. For example, we documented relatively distantly related ground‐nesting hosts (ovenbird Seiurus aurocapilla and Kentucky warbler Geothlypis formosa) sharing a single mite species, while other birds are shrub/canopy or cavity nesters. Overall, our results suggest that cospeciation is not the case for feather mites and parulid hosts at this fine phylogenetic scale, and raise the question if cospeciation applies for other symbiotic systems involving hosts that have complex life histories. We also provide preliminary evidence that incorporating host ecological traits into cophylogenetic analyses may be useful for understanding how symbiotic systems have evolved.  相似文献   

4.
Cospeciation generally increases the similarity between host and parasite phylogenies. Incongruence between host and parasite phylogenies has previously been explained in terms of host switching, sorting, and duplication events. Here, we describe an additional process, failure of the parasite to speciate in response to host speciation, that may be important in some host-parasite systems. Failure to speciate is likely to occur when gene flow among parasite populations is much higher than that of their hosts. We reconstructed trees from mitochondrial and nuclear DNA sequences for pigeons and doves (Aves: Columbiformes) and their feather lice in the genus Columbicola (Insecta: Phthiraptera). Although comparisons of the trees from each group revealed a significant amount of cospeciation, there was also a significant degree of incongruence. Cophylogenetic analyses generally indicated that host switching may be an important process in the history of this host-parasite association. Using terminal sister taxon comparisons, we also identified three apparent cases where the host has speciated but the associated parasite has not. In two of these cases of failure to speciate, these comparisons involve allopatric sister taxa of hosts whose lice also occur on hosts sympatric with both of the allopatric sisters. These additional hosts for generalist lice may promote gene flow with lice on the allopatric sister species. Relative rate comparisons for the mitochondrial cytochrome oxidase I gene indicate that molecular substitution occurs about 11 times faster in lice than in their avian hosts.  相似文献   

5.
Dispersal is a fundamental component of the life history of most species. Dispersal influences fitness, population dynamics, gene flow, genetic drift and population genetic structure. Even small differences in dispersal can alter ecological interactions and trigger an evolutionary cascade. Linking such ecological processes with evolutionary patterns is difficult, but can be carried out in the proper comparative context. Here, we investigate how differences in phoretic dispersal influence the population genetic structure of two different parasites of the same host species. We focus on two species of host‐specific feather lice (Phthiraptera: Ischnocera) that co‐occur on feral rock pigeons (Columba livia). Although these lice are ecologically very similar, “wing lice” (Columbicola columbae) disperse phoretically by “hitchhiking” on pigeon flies (Diptera: Hippoboscidae), while “body lice” (Campanulotes compar) do not. Differences in the phoretic dispersal of these species are thought to underlie observed differences in host specificity, as well as the degree of host–parasite cospeciation. These ecological and macroevolutionary patterns suggest that body lice should exhibit more genetic differentiation than wing lice. We tested this prediction among lice on individual birds and among lice on birds from three pigeon flocks. We found higher levels of genetic differentiation in body lice compared to wing lice at two spatial scales. Our results indicate that differences in phoretic dispersal can explain microevolutionary differences in population genetic structure and are consistent with macroevolutionary differences in the degree of host–parasite cospeciation.  相似文献   

6.
The chewing louse genus Colpocephalum parasitizes nearly a dozen distantly related orders of birds. Such a broad host distribution is relatively unusual in lice. However, the monophyly of the genus Colpocephalum has never been tested using molecular characters. Using one nuclear and one mitochondrial gene, we inferred a phylogeny for 54 lice from the genus Colpocephalum and other morphologically similar genera. The resulting phylogeny demonstrates that Colpocephalum itself is not monophyletic. However, these data support the existence of a Colpocephalum complex within which several lineages are restricted to particular host orders. These lineages corresponded to previously described genera, some of which are morphologically distinct and currently considered subgenera. Maddison–Slatkin tests were performed on the resulting phylogeny and showed that host order, host family and biogeographic region had significant phylogenetic signal when mapped onto the Colpocephalum complex phylogeny. A PARAFIT analysis comparing the overall Colpocephalum complex phylogeny to a host phylogeny revealed significant congruence between host and parasite trees. We also compared the cophylogenetic history of Colpocephalum and their hosts to that of a second distantly related feather louse genus, Degeeriella, which also infests diurnal birds of prey. Using PARAFIT to identify individual host–parasite links that contributed to overall congruence, there was no evidence of correlated cophylogenetic patterns between these two louse groups, suggesting that their host distribution patterns have been shaped by different evolutionary processes.  相似文献   

7.
Historically, comparisons of host and parasite phylogenies have concentrated on cospeciation. However, many of these comparisons have demonstrated that the phylogenies of hosts and parasites are seldom completely congruent, suggesting that phenomena other than cospeciation play an important role in the evolution of host-parasite assemblages. Other coevolutionary phenomena, such as host switching, parasite duplication (speciation on the host), sorting (extinction), and failure to speciate can also influence host-parasite assemblages. Using mitochondrial and nuclear protein-coding DNA sequences, I reconstructed the phylogeny of ectoparasitic toucan chewing lice in the Austrophilopterus cancellosus subspecies complex and compared this phylogeny with the phylogeny of the hosts, the Ramphastos toucans, to reconstruct the history of coevolutionary events in this host-parasite assemblage. Three salient findings emerged. First, reconstructions of host and louse phylogenies indicate that they do not branch in parallel, and their cophylogenetic history shows little or no significant cospeciation. Second, members of monophyletic Austrophilopterus toucan louse lineages are not necessarily restricted to monophyletic host lineages. Often, closely related lice are found on more distantly related but sympatric toucan hosts. Third, the geographic distribution of the hosts apparently plays a role in the speciation of these lice. These results suggest that for some louse lineages biogeography may be more important than host associations in structuring louse populations and species, particularly when host life history (e.g., hole nesting) or parasite life history (e.g., phoresis) might promote frequent host switching events between syntopic host species. These findings highlight the importance of integrating biogeographic information into cophylogenetic studies.  相似文献   

8.
Brooks parsimony analysis (BPA) and reconciliation methods in studies of host–parasite associations differ fundamentally, despite using the same null hypothesis. Reconciliation methods may eliminate or modify input data to maximize fit of single parasite clades to a null hypothesis of cospeciation, by invoking different a priori assumptions, including a known host phylogeny. By examining the degree of phylogenetic congruence among multiple parasite clades, using hosts as analogs of taxa but not presuming a host phylogeny or any degree of cospeciation a priori, BPA modifies the null hypothesis of cospeciation if necessary to maintain the integrity of the input data. Two exemplars illustrate critical empirical differences between reconciliation methods and BPA: (1) reconciliation methods rather than BPA may select the incorrect general host cladogram for a set of data from different clades of parasites, (2) BPA rather than reconciliation methods provides the most parsimonious interpretation of all available data, and (3) secondary BPA, proposed in 1990, when applied to data sets in which host‐switching produces hosts with reticulate histories, provides the most parsimonious and biologically realistic interpretations of general host cladograms. The extent to which these general host cladograms, based on cospeciation among different parasite clades inhabiting the same hosts, correspond to host phylogeny can be tested, a posteriori, by comparison with a host phylogeny generated from nonparasite data. These observations lead to the conclusion that BPA and reconciliation methods are designed to implement different research programs based on different epistemologies. BPA is an a posteriori method that is designed to assess the host context of parasite speciation events, whereas reconciliation methods are a priori methods that are designed to fit parasite phylogenies to a host phylogeny. Host‐switching events are essential for explaining complex histories of host–parasite associations. BPA assumes coevolutionary complexity (historical contingency), relying on parsimony as an a posteriori explanatory tool to summarize complex results, whereas reconciliation methods, which embody formalized assumptions of maximum cospeciation, are based on a priori conceptual parsimony. Modifications of basic reconciliation methods, embodied in TreeMap 1.0 and TreeMap 2.02, represent the addition of weighting schemes in which the researcher specifies allowed departures from cospeciation a priori, with the result that TreeMap results more closely agree with BPA results than do reconciled tree analysis results.  相似文献   

9.
Cophylogenetic relationships between penguins and their chewing lice   总被引:4,自引:0,他引:4  
It is generally thought that the evolution of obligate parasites should be linked intimately to the evolution of their hosts and that speciation by the hosts should cause speciation of their parasites. The penguins and their chewing lice present a rare opportunity to examine codivergence between a complete host order and its parasitic lice. We estimated a phylogeny for all 15 species of lice parasitising all 17 species of penguins from the third domain of the mitochondrial 12S ribosomal rRNA gene, a portion of the mitochondrial cytochrome oxidase subunit 1 gene and 55 morphological characters. We found no evidence of extensive cospeciation between penguins and their chewing lice using TreeMap 2.02beta. Despite the paucity of cospeciation, there is support for significant congruence between the louse and penguin phylogenies due to possible failure to speciate events (parasites not speciating in response to their hosts speciating).  相似文献   

10.
Recent climate change has affected the phenology of numerous species, and such differential changes may affect host–parasite interactions. Using information on vectors (louseflies, mosquitoes, blackflies) and parasites (tropical fowl mite Ornithonyssus bursa, the lousefly Ornithomyia avicularia, a chewing louse Brueelia sp., two species of feather mites Trouessartia crucifera and Trouessartia appendiculata, and two species of blood parasites Leucozytozoon whitworthi and Haemoproteus prognei) of the barn swallow Hirundo rustica collected during 1971–2008, I analyzed temporal changes in emergence and abundance, relationships with climatic conditions, and changes in the fitness impact of parasites on their hosts. Temperature and rainfall during the summer breeding season of the host increased during the study. The intensity of infestation by mites decreased, but increased for the lousefly during 1982–2008. The prevalence of two species of blood parasites increased during 1988–2008. The timing of first mass emergence of mosquitoes and blackflies advanced. These temporal changes in phenology and abundance of parasites and vectors could be linked to changes in temperature, but less so to changes in precipitation. Parasites had fitness consequences for hosts because intensity of the mite and the chewing louse was significantly associated with delayed breeding of the host, while a greater abundance of feather mites was associated with earlier breeding. Reproductive success of the host decreased with increasing abundance of the chewing louse. The temporal decrease in mite abundance was associated with advanced breeding of the host, while the increase in abundance of the lousefly was associated with earlier breeding. Virulence by the tropical fowl mite decreased with increasing temperature, independent of confounding factors. These findings suggest that climate change affects parasite species differently, hence altering the composition of the parasite community, and that climate change causes changes in the virulence of parasites. Because the changing phenology of different species of parasites had both positive and negative effects on their hosts, and because the abundance of some parasites increased, while that of other decreased, there was no consistent temporal change in host fitness during 1971–2008.  相似文献   

11.
Phylogenetic congruence is governed by various macroevolutionary events, including cospeciation, host switching, sorting, duplication, and failure to speciate. The relative frequency of these events may be influenced by factors that govern the distribution and abundance of the interacting groups; i.e., ecological factors. If so, it may be possible to predict the degree of phylogenetic congruence between two groups from information about their ecology. Unfortunately, adequate comparative ecological data are not available for many of the systems that have been subjected to cophylogenetic analysis. An exception is provided by chewing lice (Insecta: Phthiraptera), which parasitize birds and mammals. For a few genera of these lice, enough data have now been published to begin exploring the relationship between ecology and congruence. In general, there is a correspondence between important ecological factors and the degree of phylogenetic congruence. Careful comparison of these genera suggests that dispersal is a more fundamental barrier to host switching among related hosts than is establishment. Transfer experiments show that host-specific lice can survive and reproduce on novel hosts that are similar in size to the native host as long as the lice can disperse to these hosts. To date, studies of parasite dispersal have been mainly inferential. A better understanding of the role of dispersal will require more direct data on dispersal frequency and distances.  相似文献   

12.
We used phylogenetic analyses of cytochrome b sequences of malaria parasites and their avian hosts to assess the coevolutionary relationships between host and parasite lineages. Many lineages of avian malaria parasites have broad host distributions, which tend to obscure cospeciation events. The hosts of a single parasite or of closely related parasites were nonetheless most frequently recovered from members of the same host taxonomic family, more so than expected by chance. However, global assessments of the relationship between parasite and host phylogenetic trees, using Component and ParaFit, failed to detect significant cospeciation. The event-based approach employed by TreeFitter revealed significant cospeciation and duplication with certain cost assignments for these events, but host switching was consistently more prominent in matching the parasite tree to the host tree. The absence of a global cospeciation signal despite conservative host distribution most likely reflects relatively frequent acquisition of new hosts by individual parasite lineages. Understanding these processes will require a more refined species concept for malaria parasites and more extensive sampling of parasite distributions across hosts. If parasites can disperse between allopatric host populations through alternative hosts, cospeciation may not have a strong influence on the architecture of host-parasite relationships. Rather, parasite speciation may happen more often in conjunction with the acquisition of new hosts followed by divergent selection between host lineages in sympatry. Detailed studies of the phylogeographic distributions of hosts and parasites are needed to characterize these events.  相似文献   

13.
In total, 366 birds representing 55 species in 24 families and eight orders, were examined for chewing lice (Phthiraptera: Amblycera, Ischnocera) in two high‐altitude localities in Yunnan Province, China. In Ailaoshan, almost all of the birds examined were resident passeriforms, of which 36% were parasitized by chewing lice. In Jinshanyakou, most birds were on migration, and included both passerine and non‐passerine birds. Of the passerine birds caught in Jinshanyakou, only one bird (0.7%) was parasitized by chewing lice. The prevalence of Myrsidea and Brueelia‐complex lice on birds caught in Ailaoshan was higher than in previous reports. Of the chewing lice identifiable to species level, three represent new records for China: Actornithophilus hoplopteri (Mjöberg, 1910), Maculinirmus ljosalfar Gustafsson & Bush, 2017 and Quadraceps sinensis Timmermann, 1954. In total, 17 new host records are included, of which we describe two as new species in the Brueelia‐complex: Guimaraesiella (Cicchinella) ailaoshanensis sp. nov. ex Schoeniparus dubius dubius (Hume, 1874) and G. (C.) montisodalis sp. nov. ex Fulvetta manipurensis tonkinensis Delacour & Jabouille, 1930. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:9FC3D8EE‐2CED‐4DBE‐A1DB‐471B71260D27 .  相似文献   

14.
The African brood parasitic finches (Vidua spp.) are host specialists that mimic the songs and nestling mouth markings of their finch hosts (family Estrildidae). Although recent molecular analyses suggest rapid speciation associated with host switches in some members of this group, the association of different Vidua lineages with particular host genera suggests the possibility of cospeciation at higher levels in the host and parasite phylogenies. We compared a phylogeny of all Vidua species with a phylogeny of their estrildid finch hosts and compared divergence time estimates for the two groups. Basal divergences among extant members of the Vidulidae and among Vidua species are more recent than those among host genera and species, respectively, allowing a model of cospeciation to be rejected at most or all levels of the Vidua phylogeny. Nonetheless, some tests for cospeciation indicated significant congruence between host and parasite tree topologies. This result may be an artifact of clade-limited colonization. Host switches in parasitic finches have most often involved new hosts in the same or a closely related genus, an effect that increases the apparent congruence of host and parasites trees.  相似文献   

15.
Chewing lice of the species Docophorulus coarctatus were extracted from museum specimens of their host, the great grey shrike Lanius excubitor, by combing feathers from 36 freshly shot birds (shot between 1962 and 1974), and samples of ten individual lice (five female, five male) were randomly collected for measurements from each bird. Female lice were bigger than males for all studied measurements (P < 0.001 in all cases), although the size of both sexes obtained from individual hosts was positively correlated. The overall size of lice (derived from a principal components analysis) was positively correlated with the overall size of the avian host, and also with the population density of lice on the individual host. We suggest that variation in louse morphology is due to differences in selection pressure exerted by each host and by intraspecific competition due to conspecifics. This is, to the best of our knowledge, the first evidence that Harrison’s rule (parasites on larger host species are often bigger than those on smaller hosts) not only works in a multispecies comparison but also within a single host–single parasite system as well.  相似文献   

16.
Philopteridae feather lice are a group of ectoparasitic insects which have intimate relationships with their avian hosts. Feather lice include an enormous number of described species; however, the relationships of major lineages have been clouded by homoplasious characters due to convergent evolution. In this study, a comprehensive phylogenomic analysis of the group is performed which includes 137 feather louse species. Several other analyses are also completed including dating analysis, cophylogenetic reconstructions, and ancestral character estimation to understand the evolution of complex morphological and ecological traits. Phylogenetic results recover high support for the placement of major feather louse lineages, but with lower support for long-branched enigmatic genera found at the base of the tree. The results of dating analyses suggest modern feather lice began to diversify approximately 49 million years ago following the adaptive radiation of their avian hosts. Cost-based cophylogenetic reconstructions recover a high frequency of host switching, while congruence-based methods indicate a significant level of congruence between host and parasite trees. Ancestral state reconstructions favour a generalist ancestor and water bird host at the root. The analyses completed provide insight into the evolution of a diverse group of ectoparasitic insects which infest a wide variety of avian hosts. The results represent the most comprehensive phylogenetic hypothesis of the group to date and provide a framework for future classification of the family into natural groupings.  相似文献   

17.
Host specificity in parasites can be explained by spatial isolation from other potential hosts or by specialization and speciation of specific parasite species. The first assertion is based on allopatric speciation, the latter on differential lifetime reproductive success on different available hosts. We investigated the host specificity and cophylogenetic histories of four sympatric European bat species of the genus Myotis and their ectoparasitic wing mites of the genus Spinturnix. We sampled >40 parasite specimens from each bat species and reconstructed their phylogenetic COI trees to assess host specificity. To test for cospeciation, we compared host and parasite trees for congruencies in tree topologies. Corresponding divergence events in host and parasite trees were dated using the molecular clock approach. We found two species of wing mites to be host specific and one species to occur on two unrelated hosts. Host specificity cannot be explained by isolation of host species, because we found individual parasites on other species than their native hosts. Furthermore, we found no evidence for cospeciation, but for one host switch and one sorting event. Host‐specific wing mites were several million years younger than their hosts. Speciation of hosts did not cause speciation in their respective parasites, but we found that diversification of recent host lineages coincided with a lineage split in some parasites.  相似文献   

18.
Understanding both sides of host–parasite relationships can provide more complete insights into host and parasite biology in natural systems. For example, phylogenetic and population genetic comparisons between a group of hosts and their closely associated parasites can reveal patterns of host dispersal, interspecies interactions, and population structure that might not be evident from host data alone. These comparisons are also useful for understanding factors that drive host–parasite coevolutionary patterns (e.g., codivergence or host switching) over different periods of time. However, few studies have compared the evolutionary histories between multiple groups of parasites from the same group of hosts at a regional geographic scale. Here, we used genomic data to compare phylogenomic and population genomic patterns of Alaska ptarmigan and grouse species (Aves: Tetraoninae) and two genera of their associated feather lice: Lagopoecus and Goniodes. We used whole‐genome sequencing to obtain hundreds of genes and thousands of single‐nucleotide polymorphisms (SNPs) for the lice and double‐digest restriction‐associated DNA sequences to obtain SNPs from Alaska populations of two species of ptarmigan. We found that both genera of lice have some codivergence with their galliform hosts, but these relationships are primarily characterized by host switching and phylogenetic incongruence. Population structure was also uncorrelated between the hosts and lice. These patterns suggest that grouse, and ptarmigan in particular, share habitats and have likely had historical and ongoing dispersal within Alaska. However, the two genera of lice also have sufficient dissimilarities in the relationships with their hosts to suggest there are other factors, such as differences in louse dispersal ability, that shape the evolutionary patterns with their hosts.  相似文献   

19.
The species-specific associations of the African brood parasitic finches Vidua with their estrildid finch host species may have originated by cospeciation with the host species or by later colonizations of new hosts. Predictions of these alternative models were tested in two species groups of brood parasites (indigobirds, paradise whydahs) and their hosts. Phylogenetic analyses suggested that the brood parasites and their hosts did not speciate in parallel. The parasitic indigobirds share mitochondrial haplotypes with each other, and species limits in both indigobirds and paradise whydahs do not correspond with their gene trees. Different parasite species within a region are more closely related to each other than any is to parasites that are associated with its same host species in other regions of Africa. There is little genetic difference between parasite species D?i,j < 0.001 in the indigobirds, D?i,j = 0.01 in the whydahs). Genetic distances D?i,j between the parasite species are less than the genetic distances between their corresponding host species in all parasite-host comparisons, and average only 7.2% as large in the indigobirds as in their hosts and 42% as large in the paradise whydahs as in their hosts. A phylogenetic model that allows ancestral haplotype polymorphisms to be retained in descendant species was compared to a constraint model of species monophyly requiring all but the one ancestral haplotype to be independently derived within each species. The constraint model increases the length of the indigobird tree by 50% over that of the model of retained ancestral polymorphisms; the difference is statistically significant. Both phylogenetic and distance analyses indicate that the brood parasites have become associated with their host species through host switches and independent colonizations of the hosts, rather than through parallel cospeciation with them. The molecular genetic results are supported by recent discoveries of additional host species that are associated with the indigobirds in the field and by variation in the species-specific song behaviors of the brood parasites.  相似文献   

20.

Background  

Using phylogenetic approaches, the expectation that parallel cladogenesis should occur between parasites and hosts has been validated in some studies, but most others provided evidence for frequent host shifts. Here we examine the evolutionary history of the association between Microbotryum fungi that cause anther smut disease and their Caryophyllaceous hosts. We investigated the congruence between host and parasite phylogenies, inferred cospeciation events and host shifts, and assessed whether geography or plant ecology could have facilitated the putative host shifts identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号