首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many bird species, parents adjust their home‐ranges during chick‐rearing to the availability and distribution of food resources, balancing the benefits of energy intake against the costs of travelling. Over recent decades, European agricultural landscapes have changed radically, resulting in the degradation of habitats and reductions in food resources for farmland birds. Lower foraging success and longer foraging trip distances that result from these changes are often assumed to reduce the reproductive performance of parents, although the mechanisms are not well understood. We tested the behavioural response of chick‐rearing Little Owls Athene noctua to variation in habitat diversity in an agricultural landscape. We equipped females with GPS loggers and received adequate range‐use data for 19 individuals (6063–14 439 locations per bird). In habitats dominated by homogeneous cropland habitats, home‐ranges were over 12 ha in size, whereas in highly diverse habitats they were below 2 ha. Large home‐ranges were associated with increased flight activity (117% of that of birds in small home‐ranges) and distances travelled per night (152%), increased duration of foraging trips (169%) covering larger distances (246%), and reduced nest visiting rates (81%). The study therefore provides strong correlative evidence that Little Owls breeding in monotonous farmland habitats expend more time and energy for a lower benefit in terms of feeding rates than do birds in more heterogeneous landscapes. As nestling food supply is the main determinant of chick survival, these results suggest a strong impact of farmland characteristics on local demographic rates. We suggest that preserving and creating islands of high habitat diversity within uniform open agricultural landscapes should be a key target in the conservation of Little Owl populations.  相似文献   

2.
Habitat loss, fragmentation and urban expansion may drive some species to marginal habitats while others succeed in exploiting urban areas. Species that show dietary flexibility are more able to take advantage of human activities to supplement their diet with anthropogenically abundant and accessible resources. The Barbary macaque (Macaca sylvanus) is an endangered species due to the loss of its habitat, and human pressure. The population of Gouraya National Park (Algeria) lives in a relictual habitat that constitutes about 0.6% of the species range. In addition, this population is a unique case where urban expansion favours contact zones between Barbary macaque habitats and a big city (Bejaia). We quantified the dietary composition of Gouraya macaques over an annual cycle with the objective to understand how diet flexibility of this species may help it adapt to a relictual habitat or cope with urban expansion. We recorded the phenology of plant species every month. This study shows that Gouraya macaques, compared to those living in other forest types of the distribution area, are under lower seasonal constraints. They consume a greater amount of fruit and seeds that are available throughout much of the year, and a lesser amount of costly to find and extract subterranean foods. Therefore the Gouraya relictual habitat appears as a favourable environment compared to other major habitats of that species. This study also shows that colonizing peri-urban zones increases the availability and species richness of diet resources for Barbary macaques as they consume more human foods and exotic plants than in farther sites. Adult males eat more human foods than adult females and immatures do. The exploitation of high-energy anthropogenic food could favour macaque population growth and expansion towards the city center associated with human/macaque conflicts. We recommend applying management actions to restore macaques back to their natural habitat.  相似文献   

3.

Aim

Farmland abandonment or “ecological rewilding” shapes species distribution and ecological process ultimately affecting the biodiversity and functionality of ecosystems. Land abandonment predictions based on alternative future socioeconomic scenarios allow foretell the future of biota in Europe. From here, we predict how these forecasts may affect large‐scale distribution of the Cinereous vulture (Aegypius monachus), an apex scavenger closely linked to Mediterranean agro‐grazing systems.

Location

Iberian Peninsula.

Methods

Firstly, we modelled nest‐site and foraging habitat selection in relation to variables quantifying physiography, trophic resources and human disturbance. Secondly, we evaluate to what extent land abandonment may affect the life traits of the species and finally we determined how potential future distribution of the species would vary according to asymmetric socioeconomic land‐abandonment predictions for year 2040.

Results

Cinereous vultures selected breeding areas with steep slopes and low human presence whereas foraging areas are characterized by high abundance of European rabbits (Oryctolagus cuniculus) and wild ungulates. Liberalization of the Common Agricultural Policy (CAP) could potentially transform positively 66% of the current nesting habitat, favouring the recovery of mature forest. Contrarily, land abandonment would negatively affect the 63% of the current foraging habitat reducing the availability of preferred food resources (wild European rabbit). On the other hand, the maintenance of the CAP would determine lower frequencies (24%–22%) of nesting and foraging habitat change.

Main conclusions

Land abandonment may result into opposite effects on the focal species because of the increase in nesting habitats and wild ungulates populations and, on the other hand, lower availability of open areas with poorer densities of European rabbits. Land‐abandonment models’ scenarios are still coarse‐grained; the apparition of new human uses in natural areas may take place at small‐sized and medium‐sized scales, ultimately adding complexity to the prediction on the future of biota and ecosystems.
  相似文献   

4.
Climate change will impose new constraints on the distribution of species through desertification. Small-scale endemists common in biodiversity hotspots such as Madagascar are especially threatened. Among them are the gray-brown mouse lemurs (Microcebus griseorufus), which occupy the driest habitats in Madagascar of all Microcebus spp. We studied impacts of aridity on this species to identify critical factors for distributional limits. Accordingly, we compared populations of 2 adjacent habitats that differ in their humidity levels. We found that the more humid habitat provided more high-quality food and maintained a higher population density of Microcebus griseorufus, with individuals in better condition compared to the drier habitat. At the end of the wet, but not in the dry season, Microcebus griseorufus adjusted its home range size to local food plant density, which indicates that individuals optimize food intake in the wet season to prepare for the dry season. We found a negative exponential relationship between food plant density and home range size, which suggests an upper limit for the size of home ranges. According to this relationship, individuals from the drier habitat could not compensate for reduced food availability by enlarging their home range beyond this threshold. Thus, in case of declining food availability during the wet season due to a generally drier climate, individuals will not be able to extend their home ranges to include more food resources, and hence to accumulate enough fat reserves for the dry season. In consequence, they will have to migrate toward more mesic refugia. Migration, however, requires habitat connectivity, which is scarce in Madagascar’s largely anthropogenic and heavily fragmented landscape. Our data suggest that upper limits in home range sizes can limit a species’ ability to adapt to increasing aridity.  相似文献   

5.
Most small birds wintering in the tropics should show little subcutaneous fat deposition (SFD), except in habitats where food availability may decline in late winter or, for some resident species, to prepare for incubation or brooding fasts. However, these predictions need re‐examination in light of a new, precise, cross‐validated method to compare SFD among habitats and species. We sampled 170 Nearctic‐Neotropical migrant and 279 resident birds during early and late winter in 1993 and 1994 in Jamaica, West Indies. Habitats, from greatest to least expected availability of insect prey, were (1) mangrove forest, (2) montane/foothills forest and cultivation, (3) dry limestone forest, and (4) acacia scrub. Percent lipid, estimated from multiple‐regression models using visual fat scoring (0–8 scale), total‐body electrical conductivity, and a variety of morphometrics, was categorized by percentile ranks to determine if SFD varied by habitat, season, or age for all species, resident species, migrant species, and several individual species. SFD averaged ~ 13% total mass for all birds, ranging from 8–24% for well‐sampled species. The few bird species in acacia scrub, primarily two facultative long‐distance migrants, averaged ~ 26% lipid content, significantly more than birds in other habitats. Most birds did not vary in SFD in the other three habitats, although Common Yellowthroats (Geothlypis trichas) had greater SFD in dry limestone habitat than in montane habitat. Bananaquits (Coereba flaveola) and Jamaican Euphonias (Euphonia jamaica) in montane habitat, especially in early winter, had higher SFD than other resident species. Contrary to our prediction, adults and juveniles had similar SFD, with the exception of juveniles having more SFD than adults in acacia scrub habitat. Winter fat deposition (or, in some cases, muscle‐protein catabolism) in the tropics may be an overlooked strategy, potentially important as a hedge against fasting for floaters, facultative migrants, some territorial migrants in habitats with seasonal declines in food resources, and some resident species prior to breeding.  相似文献   

6.
In human‐dominated landscapes (semi)natural habitats are typically embedded in tracts of unsuitable habitat. Under such conditions, habitat characteristics and grain size of the surrounding landscape may affect how much food, and at what cost, is available for sedentary species with low home‐range plasticity. Here we combine behavioural radio‐tracking, feather ptilochronology, and landscape analysis to test how nutritional condition varies with home range size in 13 house sparrow [Passer domesticus (Linnaeus, 1758)] populations along an urban gradient. Urban individuals occupied smaller home ranges than conspecifics from rural areas, most distinctly if key cover was highly scattered. In urban plots, patch connectivity, home range sizes, and activity areas were positively correlated, indicating that individual ranging behaviour was related to the spatial distribution of suitable habitat. Urban House sparrows also showed the smallest feather growth bars, which were positively related to home range size at plot level. In contrast, growth bar widths and home range sizes were negatively related in rural populations, whereas in suburban populations, both variables varied independently. We conclude that individuals from progressively more built‐up areas show a restricted ability to adjust their daily ranging behaviour to the scattered distribution of critical resources. This may complement other putative causes of the widespread population decline of urban house sparrows. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 41–50.  相似文献   

7.
Aim Habitat selection studies have mainly focused on behavioural choices of individuals or on the habitat‐related regional distribution of a population, with little integration of the two approaches. This is despite the fact that traditional biogeography theory sees the geographical distribution of a species as the collective outcome of the adaptive habitat choices of individuals. Here, we integrate individual habitat choices with regional distribution through a bottom‐up Geographical Information System (GIS)‐based approach, by using a 9‐year data set on a large avian predator, the eagle owl (Bubo bubo L.). We further examine the potential population level and biodiversity consequences of this approach. Location The study was conducted in the Trento Region (central‐eastern Italian Alps) and in six other areas of the nearby Lombardia Region in the central Alps. Methods We used stepwise logistic regression to build a habitat suitability model discriminating between eagle owl territories and an equal number of random locations. The model was applied to the whole Trento region by means of a GIS so as to predict suitable habitat patches. The predicted regional distribution (presence–absence in 10‐km grid quadrats) was then compared with the observed one. Furthermore, we compared estimates of biodiversity in quadrats with and without eagle owls, so as to test whether the presence of this top predator may signal macro‐areas of high biodiversity. Results The logistic habitat suitability model showed that, compared with a random distribution, eagle owls selected low‐elevation breeding sites with high availability of prey‐rich habitats in their surroundings. Breeding performance increased with the availability of prey‐rich habitats, confirming the adaptiveness of the detected habitat choices. We applied the habitat suitability model to the 6200 km2 study region by means of a GIS and found a close fit between the observed and predicted regional distribution. Furthermore, population abundance was positively related to the availability of habitat defined as suitable by the above analyses. Finally, high biodiversity levels were associated with owl presence and with the amount of suitable owl habitat, demonstrating that modelling habitat suitability of a properly chosen indicator species may provide key conservation information at the wider ecosystem level. Main conclusions Our bottom‐up modelling approach may increase the conservation‐value of habitat selection models, by (1) predicting local and regional distribution, (2) estimating regional population size, (3) stimulating further hypothesis testing, (4) forecasting the population effects of future habitat loss and degradation and (5) aiding in the identification and prioritization of high‐biodiversity areas.  相似文献   

8.
Understanding the ecological, behavioural and evolutionary response of organisms to changing environments is of primary importance in a human‐altered world. It is crucial to elucidate how human activities alter gene flow and what are the consequences for the genetic structure of a species. We studied two lineages of the Egyptian fruit bat (Rousettus aegyptiacus) throughout the contact zone between mesic and arid Ecozones in the Middle East to evaluate the species' response to the growing proportion of human‐altered habitats in the desert. We integrated population genetics, morphometrics and movement ecology to analyse population structure, morphological variation and habitat use from GPS‐ or radio‐tagged individuals from both desert and Mediterranean areas. We classified the spatial distribution and environmental stratification by describing physical–geographical conditions and land cover. We analysed this information to estimate patch occupancy and used an isolation‐by‐resistance approach to model gene flow patterns. Our results suggest that lineages from desert and Mediterranean habitats, despite their admixture, are isolated by environment and by adaptation supporting their classification as ecotypes. We found a positive effect of human‐altered habitats on patch occupancy and habitat use of fruit bats by increasing the availability of roosting and foraging areas. While this commensalism promotes the distribution of fruit bats throughout the Middle East, gene flow between colonies has not been altered by human activities. This discrepancy between habitat use and gene flow patterns may, therefore, be explained by the breeding system of the species and modifications of natal dispersal patterns.  相似文献   

9.
The relative influence of consumers (top down) and resources (bottom up) on the distribution and abundance of organisms remains a key question in ecology. We examined the relationships between consumer and resource variables along a productivity gradient for a dominant predator–prey interaction in a marine soft‐sediment system. We 1) quantified density and size of the clam Macoma balthica (prey species) in six replicate sites at each of four habitat types (shallow mud, deep mud, muddy sand and detrital mud) in the Rhode River, Chesapeake Bay. We selected one habitat type of high food availability and clam density (shallow mud) and another of low food availability and clam density (muddy sand) for manipulative experiments. Then, we 2) measured M. balthica survival and growth through transplants, 3) measured food availability as sedimentary organic carbon content, 4) quantified predator density, and 5) calculated predator foraging efficiency in the two habitat types. Clam density in the four habitat types differed and was related to sedimentary carbon availability and predator density. One of the habitats, detrital mud, appeared to be a population sink because it only held juvenile Macoma that never survived to reproductive age. Macoma size and growth, and predator (mainly blue crab Callinectes sapidus) densities were positively correlated with productivity and were higher in shallow mud than muddy sand. In contrast, Macoma mortality, local ‘interaction strength’, and predator foraging efficiency were lower in the productive habitat (shallow mud). Thus, predation intensity was inversely correlated with productivity (food availability); consumer and resource effects differed by habitat type; and, at a relatively small spatial scale, consumer and resource forces jointly determined population dynamics in this soft‐sediment marine system.  相似文献   

10.
To determine if anthropogenically modified habitats possess greater numbers of round goby and serve as dispersal vectors, we used angling to compare catch‐per‐unit of effort for 64 natural and modified habitat areas. In addition, a gravel natural habitat was seined to compare length frequency distribution with anthropogenically modified habitats. Natural habitats included gravel beaches and natural rubble and cliff wall, while modified habitats included artificial riprap, concrete sea wall, and metal sheet piling. No significant difference in relative abundance was observed in round goby preference among modified habitats (P = 0.52), but natural gravel habitats were significantly different from modified habitats that included artificial riprap (P = 0.002), concrete sea wall (P < 0.001), and metal sheet piling (P = 0.003). When habitat subcategories were compared using anova , the natural gravel beach habitat was significantly different from the three artificial substrates and from natural rubble and cliff wall substrates (P < 0.004). No round goby were caught from gravel beach habitats; thus, this habitat was removed from further analysis. A Student t‐test indicated no significant difference between habitats was found between the natural rubble and cliff wall habitat and the three other artificial habitats (concrete sea wall, P = 0.33; riprap, P = 0.53; metal sheet piling, P = 0.11). We further evaluated gravel beach habitats to determine the reason for the lack of goby capture. We seined gravel beach habitat and collected 328 individuals, with which we evaluated the length‐frequency distribution and calculated length–weight relationships by sex. Our results indicated that only 5.2% of the goby population was available for capture by angling on the gravel beach habitat. A t‐test comparing the demographic attributes between seining and angling indicated a significant difference between goby length (P < 0.001) and weight (P < 0.001). The regression slope indicated an ontogenetic habitat shift occurred near 62 mm standard length. Smaller round goby individuals were found in less structurally complex gravel beach habitat, while larger individuals were associated with complex habitat.  相似文献   

11.
Population size is generally limited by resource availability during and outside the breeding season. Therefore, maximum size of flocks may provide important information on population regulation and the influence of diet and trophic level on maximal degree of sociality. We hypothesized that (a) flock size should increase with nutrient availability; (b) flock size should decrease with latitude because productivity is higher at lower latitude; (c) aquatic habitats should have larger flocks than terrestrial habitats because the former are less accessible; (d) smaller species should have larger flocks because they require overall less food; (e) human‐impacted species that live in perturbed habitats should have smaller flocks than other species; (f) flock size should decrease with increasing trophic level because there is a reduction in biomass due to conversion at each trophic level; and (g) flocks of species depending on ancestral landscapes should have decreased in size in recent years due to human impact (e.g., land‐use). We obtained 1564 observations of flocks that exceeded 100,000 individuals in order to test the predictions listed above. Most effect sizes were small to medium accounting for 1%–9% of the variance, while large effects accounting for 25% or more were only found for total nitrogen used per km2 and area used for agriculture. Changes in large bird flocks were caused by habitat degradation and persecution, and temporal decline in size of large flocks revealed changes in nutrient use, reductions in nutrient cycling, and changes in flock size linked to trophic level.  相似文献   

12.
13.
The analysis of factors that determine the distribution of top‐scavengers at large scales can provide clues to understanding important ecological processes and may be useful in establishing conservation and management strategies. Here, we conducted a large‐scale survey to study the distribution of the threatened Andean Condor Vultur gryphus in relation to environmental factors in southern Patagonia. This area has undergone the settlement of livestock and the introduction of exotic wildlife, although to a lesser extent than in the distribution of Condors in northern Patagonia. The aim of this study was to determine the relevance of different factors such as the availability of food resources, the availability of suitable nesting and roosting places and the presence of humans on large‐scale condor distribution. Our results show that the presence of meadows was the primary factor shaping Andean Condor distribution, despite the fact that this habitat occupies only 4% of the Patagonian landscapes. However, this habitat has a high probability of herbivore presence, so Condors seem to optimize their searching. The availability of nesting and roosting cliffs also contributed to explaining the observed distributions. Our results suggest that Condor distribution in southern Patagonia is a compromise between the spatial locations of two low‐frequency habitats – meadows and cliffs. A successful Condor conservation strategy in southern Patagonia should include the protection of these habitats and the regulation of farming expansion, including the recovery of meadows.  相似文献   

14.
Understanding factors that influence habitat selection in heterogeneous landscapes is fundamental for establishing realistic models on animal distribution to inform rangeland management. In this study, we tested whether seasonal variation in habitat selection within the home range of a large herbivore was influenced by constraints such as, distances from water and central place using semi‐free range cattle (Bos taurus) as a case study. We also tested whether shifts in space use over time were dependent on spatial scale and on the overall abundance of resources. We predicted that distance from water significantly influenced dry season habitat selection while the influence of the central place on habitat selection was season‐independent. We also predicted that shifts in space use over time were spatial scale‐dependent, and that large herbivores would include more diverse habitats in their home ranges during the dry season, when water and food resources are less abundant. Multinomial logit models were used to construct habitat selection models with distances from water and central place as habitat‐specific constraints. Results showed significant variations in habitat selection between the dry and wet season. As predicted, the effect of distance from central place was season‐independent, while the effect of water was not included in the top dry season models contrary to expectation. A diverse range of habitats were also selected during the dry season including agricultural fields. Results also indicated that shifts in space use were spatial scale dependent, with core areas being more sensitive to changes than the home range. In addition, shifts in space use responded to temporal changes in habitat composition. Overall, our results suggest that semi‐free range herbivores adopt different foraging strategies in response to spatial‐temporal changes in habitat availability.  相似文献   

15.
A species may modify its relative habitat use with changing availability, generating functional responses in habitat selection. Functional responses in habitat selection are expected to occur when animals experience trade-offs influencing their habitat selection, but only a few studies to date have explicitly linked functional responses to the underlying trade-offs faced by the animals. We used data from 39 female moose fitted with GPS telemetry collars in two nearby study areas in Canada to investigate if moose (1) were faced with a food/cover trade-off in habitat selection, as typically acknowledged in the literature, and (2) showed a functional response in their use of food/cover-rich habitats. We also examined how habitat selection patterns varied seasonally, and between study areas. The occurrence of functional responses varied strongly between study areas, and could not always be related to a measurable food/cover trade-off. Functional responses were observed more often in the study area where the environmental conditions were more severe (colder temperatures, higher precipitations, and lower food availability). Selection coefficients were also less variable among individuals in that study area, suggesting that severe environmental conditions may constrain individuals to a few selection tactics and promote the development of functional responses. Moose reacted to the availability of different habitat types in different seasons, reflecting the changing trade-offs faced by the animals. We found considerable behavioral differences between individuals from two adjacent study areas, and therefore recommend caution when extrapolating habitat selection results. We advocate for the wider use of functional responses to identify critical habitats for a species from a management or conservation perspective.  相似文献   

16.
Animals select habitats that will ultimately optimize their fitness through access to favorable resources, such as food, mates, and breeding sites. However, access to these resources may be limited by bottom‐up effects, such as availability, and top‐down effects, such as risk avoidance and competition, including that with humans. Competition between wildlife and people over resources, specifically over space, has played a significant role in the worldwide decrease in large carnivores. The goal of this study was to determine the habitat selection of cheetahs (Acinonyx jubatus) in a human‐wildlife landscape at multiple spatial scales. Cheetahs are a wide‐ranging, large carnivore, whose significant decline is largely attributed to habitat loss and fragmentation. It is believed that 77% of the global cheetah population ranges outside protected areas, yet little is known about cheetahs’ resource use in areas where they co‐occur with people. The selection, or avoidance, of three anthropogenic variables (human footprint density, distance to main roads and wildlife areas) and five environmental variables (open habitat, semiclosed habitat, edge density, patch density and slope), at multiple spatial scales, was determined by analyzing collar data from six cheetahs. Cheetahs selected variables at different scales; anthropogenic variables were selected at broader scales (720–1440 m) than environmental variables (90–180 m), suggesting that anthropogenic pressures affect habitat selection at a home‐range level, whilst environmental variables influence site‐level habitat selection. Cheetah presence was best explained by human presence, wildlife areas, semiclosed habitat, edge density and slope. Cheetahs showed avoidance for humans and steep slopes and selected for wildlife areas and areas with high proportions of semiclosed habitat and edge density. Understanding a species’ resource requirements, and how these might be affected by humans, is crucial for conservation. Using a multiscale approach, we provide new insights into the habitat selection of a large carnivore living in a human‐wildlife landscape.  相似文献   

17.
Understanding how habitat quality in heterogeneous landscapes governs the distribution and fitness of individuals is a fundamental aspect of ecology. While mean individual fitness is generally considered a key to assessing habitat quality, a comprehensive understanding of habitat quality in heterogeneous landscapes requires estimates of dispersal rates among habitat types. The increasing accessibility of genomic approaches, combined with field‐based demographic methods, provides novel opportunities for incorporating dispersal estimation into assessments of habitat quality. In this study, we integrated genomic kinship approaches with field‐based estimates of fitness components and approximate Bayesian computation (ABC) procedures to estimate habitat‐specific dispersal rates and characterize habitat quality in two‐toed sloths (Choloepus hoffmanni) occurring in a Costa Rican agricultural ecosystem. Field‐based observations indicated that birth and survival rates were similar in a sparsely shaded cacao farm and adjacent cattle pasture–forest mosaic. Sloth density was threefold higher in pasture compared with cacao, whereas home range size and overlap were greater in cacao compared with pasture. Dispersal rates were similar between the two habitats, as estimated using ABC procedures applied to the spatial distribution of pairs of related individuals identified using 3,431 single nucleotide polymorphism and 11 microsatellite locus genotypes. Our results indicate that crops produced under a sparse overstorey can, in some cases, constitute lower‐quality habitat than pasture–forest mosaics for sloths, perhaps because of differences in food resources or predator communities. Finally, our study demonstrates that integrating field‐based demographic approaches with genomic methods can provide a powerful means for characterizing habitat quality for animal populations occurring in heterogeneous landscapes.  相似文献   

18.
Seasonal fluctuations in climatic factors are expected to increase in future decades. However, little is known about the response of tropical species communities to seasonal fluctuations in climate and resource availability, particularly across different habitat types. We examined the relationship between spatio‐temporal fluctuations in the abundance of fruits and invertebrates and two avian feeding guilds, i.e. frugivores and insectivores, in forest and farmland habitats in western Kenya. Fruits and invertebrates fluctuated substantially throughout the year, but seasonal fluctuations were asynchronous between the two habitat types. Species richness and total abundance of frugivores and insectivores also fluctuated strongly and were closely related to the abundance of their respective resources. Frugivore species richness fluctuated anti‐cyclical in forest and farmland habitats, suggesting that several frugivorous species tracked fruit resources across habitat boundaries. In contrast, insectivorous bird richness fluctuated synchronously in the two habitat types, suggesting a lack of local‐scale movements across habitat boundaries. We conclude that bird communities strongly respond to seasonal fluctuations in resource availability, but responses differ between feeding guilds. While frugivores seem to respond flexibly to seasonal fluctuations, for instance by tracking fruit resources across habitat boundaries, insectivorous birds appear to be more susceptible to the expected increase in seasonal fluctuations in resource availability.  相似文献   

19.
The effects of intensive commercial livestock farming on the distribution and habitat use of the redwing francolin, Francolinus levaillantii, was investigated to identify habitat constraints that may contribute towards the observed decline of this species on livestock farms. Data on the size, placement of the home ranges and compositional habitat use from ten radio‐tracked individuals, five in commercially grazed (and frequently burned) and five in protected (and infrequently burned) highland grasslands, was collated to determine habitat preferences. Mean home range size within protected and grazed grassland study sites were similar and ranged between 7.6 and 15.4 hectares. However, habitat use by groups in grazed grasslands was restricted to areas of greater cover and food availability. Group sizes were significantly larger in protected (mean 3.77, n = 111 coveys) than in grazed and frequently burned grassland (mean = 2.96, n = 135 coveys). Smaller coveys in grazed habitats had smaller home ranges and were further spaced from one another. It is therefore suggested that habitat degradation, through excessive defoliation of the grassland from heavy grazing and frequent burning, both fragments francolin subpopulations and reduces the ecological availability of suitable habitat. Thus, undermining the metapopulation structure of the redwing francolin in these commercially grazed grasslands.  相似文献   

20.
Future climate change is likely to affect distributions of species, disrupt biotic interactions, and cause spatial incongruity of predator–prey habitats. Understanding the impacts of future climate change on species distribution will help in the formulation of conservation policies to reduce the risks of future biodiversity losses. Using a species distribution modeling approach by MaxEnt, we modeled current and future distributions of snow leopard (Panthera uncia) and its common prey, blue sheep (Pseudois nayaur), and observed the changes in niche overlap in the Nepal Himalaya. Annual mean temperature is the major climatic factor responsible for the snow leopard and blue sheep distributions in the energy‐deficient environments of high altitudes. Currently, about 15.32% and 15.93% area of the Nepal Himalaya are suitable for snow leopard and blue sheep habitats, respectively. The bioclimatic models show that the current suitable habitats of both snow leopard and blue sheep will be reduced under future climate change. The predicted suitable habitat of the snow leopard is decreased when blue sheep habitats is incorporated in the model. Our climate‐only model shows that only 11.64% (17,190 km2) area of Nepal is suitable for the snow leopard under current climate and the suitable habitat reduces to 5,435 km2 (reduced by 24.02%) after incorporating the predicted distribution of blue sheep. The predicted distribution of snow leopard reduces by 14.57% in 2030 and by 21.57% in 2050 when the predicted distribution of blue sheep is included as compared to 1.98% reduction in 2030 and 3.80% reduction in 2050 based on the climate‐only model. It is predicted that future climate may alter the predator–prey spatial interaction inducing a lower degree of overlap and a higher degree of mismatch between snow leopard and blue sheep niches. This suggests increased energetic costs of finding preferred prey for snow leopards – a species already facing energetic constraints due to the limited dietary resources in its alpine habitat. Our findings provide valuable information for extension of protected areas in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号