首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The white‐nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, is threatening the cave‐dwelling bat fauna of North America by killing individuals by the thousands in hibernacula each winter since its appearance in New York State less than ten years ago. Epidemiological models predict that WNS will reach the western coast of the USA by 2035, potentially eliminating most populations of susceptible bat species in its path (Frick et al. 2015; O'Regan et al. 2015). These models were built and validated using distributional data from the early years of the epidemic, which spread throughout eastern North America following a route driven by cave density and winter severity (Maher et al. 2012). In this issue of Molecular Ecology, Wilder et al. (2015) refine these findings by showing that connectivity among host populations, as assessed by population genetic markers, is crucial in determining the spread of the pathogen. Because host connectivity is much reduced in the hitherto disease free western half of North America, Wilder et al. make the reassuring prediction that the disease will spread more slowly west of the Great Plains.  相似文献   

2.
    
Bat population trends are particularly affected by adult mortality, especially when large numbers of individuals die, as evidenced by white‐nose syndrome in North America. We obtained baseline mortality data from 318 European hibernacula. Mortality was low and negatively associated with elevation but not with fungal infestation. Mortality events involving more than seven bats at a hibernaculum should be considered unusual, and above this threshold, pathological or microbiological analysis should be carried out. To increase understanding of mortality in bats, there is an urgent need to develop and co‐ordinate national and international programs for monitoring and investigating mortality and diseases.  相似文献   

3.
4.
5.
    
Understanding the winter behavior of bats in temperate North America can provide insight into how bats react to perturbations caused by natural disturbances such as weather, human‐induced disturbances, or the introduction of disease. This study measured the activity patterns of bats outside of their hibernaculum and asked how this winter activity varied by time, temperature, bat species, body condition, and WNS status. Over the course of three winters (2011–2013), we collected acoustic data and captured bats outside of five hibernacula in Tennessee, United States. During this time, Pseudogymnoascus destructans, the causative agent of white‐nose syndrome, became established in hibernacula throughout the region, allowing us to track disease‐related changes in the winter behavior of ten bat species. We determined that bats in the southeastern United States were active during winter regardless of disease. We recorded activity outside of hibernacula at temperatures as low as ?13°C. Although bat activity was best determined by a combination of variables, the strongest factor was mean daily temperature (R 2 = .2879, F 1,1450 = 586.2, p  < .0001). Bats that left the hibernacula earlier in evening had lower body condition than those that left 2–4 hr after sunset (F 7,932 = 7.225, p  < .0001, Tukey HSD, p  < .05). The number of daytime emergences from hibernacula, as determined via acoustic detection, increased the longer a site was P. destructans positive (F 3,17 808 = 124.48, p  < .0001, Tukey HSD, p  < .05). Through the use of passive acoustic monitoring and monthly captures, we determined that winter activity was driven by both ambient temperature and the presence of P. destructans .  相似文献   

6.
    
Landscape complexity influences patterns of animal dispersal, which in turn may affect both gene flow and the spread of pathogens. White‐nose syndrome (WNS) is an introduced fungal disease that has spread rapidly throughout eastern North America, causing massive mortality in bat populations. We tested for a relationship between the population genetic structure of the most common host, the little brown myotis (Myotis lucifugus), and the geographic spread of WNS to date by evaluating logistic regression models of WNS risk among hibernating colonies in eastern North America. We hypothesized that risk of WNS to susceptible host colonies should increase with both geographic proximity and genetic similarity, reflecting historical connectivity, to infected colonies. Consistent with this hypothesis, inclusion of genetic distance between infected and susceptible colonies significantly improved models of disease spread, capturing heterogeneity in the spatial expansion of WNS despite low levels of genetic differentiation among eastern populations. Expanding our genetic analysis to the continental range of little brown myotis reveals strongly contrasting patterns of population structure between eastern and western North America. Genetic structure increases markedly moving westward into the northern Great Plains, beyond the current distribution of WNS. In western North America, genetic differentiation of geographically proximate populations often exceeds levels observed across the entire eastern region, suggesting infrequent and/or locally restricted dispersal, and thus relatively limited opportunities for pathogen introduction in western North America. Taken together, our analyses suggest a possibly slower future rate of spread of the WNS pathogen, at least as mediated by little brown myotis.  相似文献   

7.
    
《Evolutionary Applications》2017,10(10):1076-1090
White‐nose syndrome (WNS) has devastated populations of hibernating bats in eastern North America, leading to emergency conservation listings for several species including the previously ubiquitous little brown myotis (Myotis lucifugus). However, some bat populations near the epicenter of the WNS panzootic appear to be stabilizing after initial precipitous declines, which could reflect a selective immunogenetic sweep. To investigate the hypothesis that WNS exerts significant selection on the immunome of affected bat populations, we developed a novel, high‐throughput sequence capture assay targeting 138 adaptive, intrinsic, and innate immunity genes of putative adaptive significance, as well as their respective regulatory regions (~370 kbp of genomic sequence/individual). We used the assay to explore baseline immunogenetic variation in M. lucifugus and to investigate whether particular immune genes/variants are associated with WNS susceptibility. We also used our assay to detect 1,038 putatively neutral single nucleotide polymorphisms and characterize contemporary population structure, providing context for the identification of local immunogenetic adaptation. Sequence capture provided a cost‐effective, “all‐in‐one” assay to test for neutral genetic and immunogenetic structure and revealed fine‐scale, baseline immunogenetic differentiation between sampling sites <600 km apart. We identified functional immunogenetic variants in M. lucifugus associated with WNS susceptibility. This study lays the foundations for future investigations of rangewide immunogenetic adaptation to WNS in M. lucifugus and provides a blueprint for studies of evolutionary rescue in other host–pathogen systems.  相似文献   

8.
    
Depicting the spatial distribution of wildlife species is an important first step in developing management and conservation programs for particular species. Accurate representation of a species distribution is important for predicting the effects of climate change, land‐use change, management activities, disease, and other landscape‐level processes on wildlife populations. We developed models to estimate the spatial distribution of little brown bat (Myotis lucifugus) wintering populations in the United States east of the 100th meridian, based on known hibernacula locations. From this data, we developed several scenarios of wintering population counts per county that incorporated uncertainty in the spatial distribution of the hibernacula as well as uncertainty in the size of the current little brown bat population. We assessed the variability in our results resulting from effects of uncertainty. Despite considerable uncertainty in the known locations of overwintering little brown bats in the eastern United States, we believe that models accurately depicting the effects of the uncertainty are useful for making management decisions as these models are a coherent organization of the best available information.  相似文献   

9.
    
Disease has caused striking declines in wildlife and threatens numerous species with extinction. Theory suggests that the ecology and density-dependence of transmission dynamics can determine the probability of disease-caused extinction, but few empirical studies have simultaneously examined multiple factors influencing disease impact. We show, in hibernating bats infected with Geomyces destructans, that impacts of disease on solitary species were lower in smaller populations, whereas in socially gregarious species declines were equally severe in populations spanning four orders of magnitude. However, as these gregarious species declined, we observed decreases in social group size that reduced the likelihood of extinction. In addition, disease impacts in these species increased with humidity and temperature such that the coldest and driest roosts provided initial refuge from disease. These results expand our theoretical framework and provide an empirical basis for determining which host species are likely to be driven extinct while management action is still possible.  相似文献   

10.
Theoretically, individuals whose ancestors evolved in cold and/or dry climates should have greater nasal mucosal surface area relative to air volume of the nasal passages than individuals whose ancestors evolved in warm, humid climates. A high surface-area-to-volume (SA/V) ratio allows relatively more air to come in contact with the mucosa and facilitates more efficient heat and moisture exchange during inspiration and expiration, which would be adaptive in a cold, dry environment. Conversely, a low SA/V ratio is not as efficient at recapturing heat and moisture during expiration and allows for better heat dissipation, which would be adaptive in a warm, humid environment. To test this hypothesis, cross-sectional measurements of the nasal passages that reflect surface area and volume were collected from a sample of CT scans of patients of European and African ancestry. Results indicate that individuals of European descent do have higher SA/V ratios than individuals of African descent, but only when decongested. Otherwise, the two groups show little difference. This pattern of variation may be due to selection for different SA/V configurations during times of physical exertion, which has been shown to elicit decongestion. Relationships between linear measurements of the skeletal nasal aperture and cavity and cross-sectional dimensions were also examined. Contrary to predictions, the nasal index, the ratio of nasal breadth to nasal height, is not strongly correlated with internal dimensions. However, differences between the nasal indices of the two groups are highly significant. These results may be indicative of different adaptive solutions to the same problem.  相似文献   

11.
Searching for process information in the aroma of cell cultures   总被引:1,自引:0,他引:1  
Aroma emissions from living cells can provide valuable information about the metabolic and physiological condition of those cells. Electronic noses are chemical gas-sensor arrays that use artificial neural network models to evaluate aromas. They can interpret the complex aroma information emitted from cultures of bacteria, yeast cells and animal cells. Potential applications for electronic noses range from medical diagnosis to industrial bioprocessing.  相似文献   

12.
    
White‐nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans and is devastating North American bat populations. Sebaceous lipids secreted from host integumentary tissues are implicated in the initial attachment and recognition of host tissues by pathogenic fungi. We are interested in determining if ratios of lipid classes in sebum can be used as biomarkers to diagnose severity of fungal infection in bats. To first establish lipid compositions in bats, we isolated secreted and integral lipid fractions from the hair and wing tissues of three species: big brown bats (Eptesicus fuscus), Eastern red bats (Lasiurus borealis), and evening bats (Nycticeius humeralis). Sterols, FFAs, MAGs, and squalene were derivatized as trimethylsilyl esters, separated by gas chromatography, and identified by mass spectrometry. Ratios of sterol to squalene in different tissues were determined, and cholesterol as a disease biomarker was assessed. Free sterol was the dominant lipid class of bat integument. Squalene/sterol ratio is highest in wing sebum. Secreted wing lipid contained higher proportions of saturated FFAs and MAGs than integral wing or secreted hair lipid. These compounds are targets for investigating responses of P. destructans to specific host lipid compounds and as biomarkers to diagnose WNS.  相似文献   

13.
    
We investigated habitat preference in the community of ungulates in the Calakmul Forest of Southern Mexico through systematically counting the tracks of six species in randomly placed transects. Tracks were associated with one of four major forest types according to Pennington and Sarukhan (1998) . Forest type availability was estimated through 393 independent points on the same transects. We surveyed 90 transects in three hunted areas and one large nonhunted area, with a total of 206 km walked. A total of 1672 tracks of the six species were found. Brocket deer (Mazama americana and Mazama pandora) preferred low‐dry forest in the nonhunted area and low‐flooded forest in the hunted areas. Collared peccary (Pecari tajacu) was a generalist species in the nonhunted area, whereas in the hunted areas, it preferred the subperennial forest. White‐lipped peccary (Tayassu pecari) was found only in subperennial forest in the nonhunted area and favored low‐flooded forest in the hunted areas. White‐tailed deer (Odocoileus virginianus) preferred low‐flooded forest in the hunted areas, while it was a generalist in the nonhunted area. Tapir (Tapirus bairdii) preferred low‐flooded forest in the hunted areas. The most evident habitat difference among hunted and nonhunted areas was a major use of low‐flooded forest in the hunted areas for the species. Conservation of ungulate species in the Calakmul region requires protection of all major habitat types in hunted and nonhunted areas.  相似文献   

14.
蜜蜂总科昆虫是重要的生物资源, 可为人类提供蜂产品、为生态系统提供授粉服务等。当前全球蜜蜂资源呈下降趋势, 亟需加强监测和保护。虽然调查和监测蜜蜂总科昆虫的方法有多种, 但各方法适用的监测类群还不甚清楚。为了对蜜蜂总科昆虫进行系统监测, 更为了全面揭示蜜蜂总科昆虫的多样性, 本研究选择生物资源极为丰富的中国科学院西双版纳热带植物园, 利用样线法、马来氏网法和黄盘法对蜜蜂总科昆虫资源及多样性进行监测, 比较了不同方法的监测效果。经过一年期系统监测, 收集到蜜蜂总科(包括蜜蜂科、隧蜂科、切叶蜂科、分舌蜂科、泥蜂科、方头泥蜂科和蠊泥蜂科)昆虫14,896头, 隶属于7科54属345种。稀释曲线显示3种方法采样覆盖度均充分, 但收集的主要类群有差异。样线法监测到6科33属133种, 蜜蜂科、切叶蜂科和隧蜂科的多样性较高, 有3个优势种及44个稀有种。马来氏网法监测到7科50属260种, 方头泥蜂科、切叶蜂科和隧蜂科的多样性较高, 有6个优势种及130个稀有种。黄盘法监测到6科29属122种, 方头泥蜂科多样性高, 而蜜蜂科个体数多, 有6个优势种及49个稀有种。结果显示不同方法适合监测蜜蜂总科昆虫中不同的类群及种类, 组合使用可监测到更多物种, 这将为蜜蜂总科昆虫的调查、种群监测提供方法选择, 也为有效保护蜜蜂总科昆虫资源提供基础数据。  相似文献   

15.
    
In multihost disease systems, differences in mortality between species may reflect variation in host physiology, morphology, and behavior. In systems where the pathogen can persist in the environment, microclimate conditions, and the adaptation of the host to these conditions, may also impact mortality. White‐nose syndrome (WNS) is an emerging disease of hibernating bats caused by an environmentally persistent fungus, Pseudogymnoascus destructans. We assessed the effects of body mass, torpid metabolic rate, evaporative water loss, and hibernaculum temperature and water vapor deficit on predicted overwinter survival of bats infected by P. destructans. We used a hibernation energetics model in an individual‐based model framework to predict the probability of survival of nine bat species at eight sampling sites across North America. The model predicts time until fat exhaustion as a function of species‐specific host characteristics, hibernaculum microclimate, and fungal growth. We fit a linear model to determine relationships with each variable and predicted survival and semipartial correlation coefficients to determine the major drivers in variation in bat survival. We found host body mass and hibernaculum water vapor deficit explained over half of the variation in survival with WNS across species. As previous work on the interplay between host and pathogen physiology and the environment has focused on species with narrow microclimate preferences, our view on this relationship is limited. Our results highlight some key predictors of interspecific survival among western bat species and provide a framework to assess impacts of WNS as the fungus continues to spread into western North America.  相似文献   

16.
17.
    
Understanding animals'' behavioral and physiological responses to pathogenic diseases is critical for management and conservation. One such disease, white‐nose syndrome (WNS), has greatly affected bat populations throughout eastern North America leading to significant population declines in several species. Although tricolored bat (Perimyotis subflavus) populations have experienced significant declines, little research has been conducted on their responses to the disease, particularly in the southeastern United States. Our objective was to document changes in tricolored bat roost site use after the appearance of WNS in a hibernaculum in the southeastern U.S. and relate these to microsite temperatures, ambient conditions, and population trends. We censused a tricolored bat hibernaculum in northwestern South Carolina, USA, once each year between February 26 and March 2, 2014–2021, and recorded species, section of the tunnel, distance from the entrance, and wall temperature next to each bat. The number of tricolored bats in the hibernaculum dropped by 90.3% during the first 3 years after the arrival of WNS. However, numbers stabilized and slightly increased from 2018 to 2021. Prior to the arrival of WNS, 95.6% of tricolored bats roosted in the back portion of the tunnel that was the warmest. After the arrival of WNS, we observed a significant increase in the proportion of bats using the front, colder portions of the tunnel, particularly during the period of population stabilization and increase. Roost temperatures of bats were also positively associated with February external temperatures. Our results suggest that greater use of the colder sections of the tunnel by tricolored bats could have led to increased survival due to slower growth rates of the fungus that causes WNS in colder temperatures or decreased energetic costs associated with colder hibernation temperatures. Thus, management actions that provide cold hibernacula may be an option for long‐term management of hibernacula, particularly in southern regions.  相似文献   

18.
    
Semen collection and preservation is the first step toward the development of an artificial insemination program in endangered Pteropus spp. Semen was collected by manual stimulation from a single “human‐habituated” P. alecto. Manual stimulation resulted in the successful collection of motile spermatozoa on 17 of 34 attempts. The semen had a pH of 8.2 (n=2). With the exception of volume, seminal characteristics (concentration, motility, acrosome and plasma membrane status) were similar to those collected previously by electro‐ejaculation. Zoo Biol 27:159–164, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
    
Zhang X  Huang C  Tang X  Zhuang Y  Hew CL 《Proteins》2004,55(2):229-235
  相似文献   

20.
    
Emerging fungal diseases have become challenges for wildlife health and conservation. North American hibernating bat species are threatened by the psychrophilic fungus Pseudogymnoascus destructans (Pd) causing the disease called white‐nose syndrome (WNS) with unprecedented mortality rates. The fungus is widespread in North America and Europe, however, disease is not manifested in European bats. Differences in epidemiology and pathology indicate an evolution of resistance or tolerance mechanisms towards Pd in European bats. We compared the proteomic profile of blood plasma in healthy and Pd‐colonized European Myotis myotis and North American Myotis lucifugus in order to identify pathophysiological changes associated with Pd colonization, which might also explain the differences in bat survival. Expression analyses of plasma proteins revealed differences in healthy and Pd‐colonized M. lucifugus, but not in M. myotis. We identified differentially expressed proteins for acute phase response, constitutive and adaptive immunity, oxidative stress defence, metabolism and structural proteins of exosomes and desmosomes, suggesting a systemic response against Pd in North American M. lucifugus but not European M. myotis. The differences in plasma proteomic profiles between European and North American bat species colonized by Pd suggest European bats have evolved tolerance mechanisms towards Pd infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号