首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1‐checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in recombinant antibody production cultures. Biotechnol. Bioeng. 2015;112: 141–155. © 2014 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

4.
Post‐translational limitations in the endoplasmic reticulum during recombinant monoclonal antibody production are an important factor in lowering the capacity for synthesis and secretion of correctly folded proteins. Mammalian protein disulfide isomerase (PDI) has previously been shown to have a role in the formation of disulfide bonds in immunoglobulins. Several attempts have been made to improve the rate of recombinant protein production by overexpressing PDI but the results from these studies have been inconclusive. Here we examine the effect of (a) transiently silencing PDI mRNA and (b) increasing the intracellular levels of members of the PDI family (PDI, ERp72, and PDIp) on the mRNA levels, assembly and secretion of an IgG4 isotype. Although transiently silencing PDI in NS0/2N2 cells suggests that PDI is involved in disulfide bond formation of this subclass of antibody, our results show that PDI does not control the overall IgG4 productivity. Furthermore, overexpression of members of the PDI family in a Chinese hamster ovary (CHO) cell line does not improve productivity and hence we conclude that the catalysis of disulfide bond formation is not rate limiting for IgG4 production. Biotechnol. Bioeng. 2010. 105: 770–779. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
Due to the increasing economic and social relevance of biotherapeutics, their production processes are continually being reconsidered and reoptimized in an effort to secure higher product concentrations and qualities. Monitoring the productivity of cultured cells is therefore a critically important part of the cultivation process. Traditionally, this is achieved by determining the overall product titer by high performance liquid chromatography (HPLC), and then calculating the specific cell productivity based on this titer and an associated viable cell density. Unfortunately, this process is typically time‐consuming and laborious. In this study, the productivity of Chinese Hamster Ovary (CHO) cells expressing a monoclonal antibody was analyzed over the course of the cultivation process. In addition to calculating the specific cell productivity based on the traditional product titer determined by HPLC analysis, culture productivity of single cells was also analyzed via flow cytometry using a cold capture assay. The cold capture assay is a cell surface labelling technique described by Brezinsky et al., which allows for the visualization of a product on the surface of the producing cell. The cell productivity results obtained via HPLC and the results of cold capture assay remained in great accordance over the whole cultivation process. Accordingly, our study demonstrates that the cold capture assay offers an interesting, comparatively time‐effective, and potentially cheaper alternative for monitoring the productivity of a cell culture.  相似文献   

6.
7.
Recombinant biotherapeutic proteins such as monoclonal antibodies are mostly produced in Chinese hamster ovary (CHO) cells and pharmaceutical companies are interested in an appropriate platform technology for the development of large‐scale production processes. A major aim of our study was therefore to improve the secretion efficiency of a recombinant biotherapeutic antibody by optimizing signal peptides. Reporter molecules such as gaussia and vargula luciferase or secreted alkaline phosphatase are frequently used to this end. In striking contrast, we used a biotherapeutic antibody that was fused to 16 different signal peptides during our study. In this way, the secretion efficiency of the recombinant antibody has been analyzed by transient expression experiments in CHO cell lines. Compared to the control signal peptide, it was not possible to achieve higher efficiencies with signal peptides derived from a variety of species or even natural immunoglobulin G signal peptides. The best results were obtained with natural signal peptides derived from human albumin and human azurocidin. These results were confirmed by fed‐batch experiments with stably transfected cell pools, in which cell‐specific productivities up to 90 pg cell?1 day?1 and product concentrations up to 4 g L?1 could be determined using the albumin signal peptide. Finally, the applicability of the identified signal peptides for both different antibodies and non‐antibody products was demonstrated by transient expression experiments. In conclusion, it was found that signal peptides derived from human albumin and human azurocidin are most appropriate to generate cell lines with clearly improved production rates suitable for commercial purposes in a product‐independent manner. Biotechnol. Bioeng. 2013; 110: 1164–1173. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
A majority of the biotherapeutics industry today relies on the manufacturing of monoclonal antibodies from Chinese hamster ovary (CHO) cells, yet challenges remain with maintaining consistent product quality from high-producing cell lines. Previous studies report the impact of individual trace metal supplemental on CHO cells, and thus, the combinatorial effects of these metals could be leveraged to improve bioprocesses further. A three-level factorial experimental design was performed in fed-batch shake flasks to evaluate the impact of time wise addition of individual or combined trace metals (zinc and copper) on CHO cell culture performance. Correlations among each factor (experimental parameters) and response variables (changes in cell culture performance) were examined based on their significance and goodness of fit to a partial least square's regression model. The model indicated that zinc concentration and time of addition counter-influence peak viable cell density and antibody production. Meanwhile, early copper supplementation influenced late-stage ROS activity in a dose-dependent manner likely by alleviating cellular oxidative stress. Regression coefficients indicated that combined metal addition had less significant impact on titer and specific productivity compared to zinc addition alone, although titer increased the most under combined metal addition. Glycan analysis showed that combined metal addition reduced galactosylation to a greater extent than single metals when supplemented during the early growth phase. A validation experiment was performed to confirm the validity of the regression model by testing an optimized setpoint of metal supplement time and concentration to improve protein productivity.  相似文献   

9.
To find a more effective chemical reagent for improved monoclonal antibody (mAb) production, eight chemical reagents (curcumin, quercein, DL‐sulforaphane, thymidine, valeric acid, phenyl butyrate, valproic acid, and lithium chloride) known to induce cell cycle arrest were examined individually as chemical additives to recombinant CHO (rCHO) cell cultures producing mAb. Among these chemical additives, valeric acid showed the best production performance. Valeric acid decreased specific growth rate (μ), but increased culture longevity and specific mAb productivity (qmAb) in a dose‐dependent manner. The beneficial effect of valeric acid on culture longevity and qmAb outweighed its detrimental effect on μ, resulting in 2.9‐fold increase in the maximum mAb concentration when 1.5 mM valeric acid was added to the cultures. Furthermore, valeric acid did not negatively affect the mAb quality attributes with regard to aggregation, charge variation, and galactosylation. Unexpectedly, galactosylation of the mAb increased by the 1.5 mM valeric acid addition. Taken together, the results obtained here demonstrate that valeric acid is an effective chemical reagent to increase mAb production in rCHO cells.  相似文献   

10.
We previously compared changes in individual protein abundance between the proteomes of GS-NS0 cell lines with varying rates of cell-specific recombinant monoclonal antibody production (qMab). Here we extend analyses of our proteomic dataset to statistically determine if particular cell lines have distinct functional capabilities that facilitate production of secreted recombinant Mab. We categorized 79 proteins identified by mass spectrometry according to their biological function or location in the cell and statistically compared the relative abundance of proteins in each category between GS-NS0 cell lines with varying qMab. We found that the relative abundance of proteins in ER chaperone, non-ER chaperone, cytoskeletal, cell signaling, metabolic, and mitochondrial categories were significantly increased with qMab. As the GS-NS0 cell line with highest qMab also had an increased intracellular abundance of unassembled Mab heavy chain (HC), we tested the hypothesis that the increased ER chaperone content was caused by induction of an unfolded protein response (UPR) signaling pathway. Immunoblot analyses revealed that spliced X-box binding protein 1 (XBP1), a marker for UPR induction, was not detectable in the GS-NS0 cells with elevated qMab, although it was induced by chemical inhibitors of protein folding. These data suggest that qMab is functionally related to the abundance of specific categories of proteins that together facilitate recombinant protein production. We infer that individual cells within parental populations are more functionally equipped for high-level recombinant protein production than others and that this bias could be used to select cells that are more likely to achieve high qMab.  相似文献   

11.
12.
A unique and nontraditional approach using glutamine and asparagine supplements for CHO‐glutamine synthetase (GS) cell lines was studied. In our experiments, we found that a decrease in pH and an increase in cell death occurred in production phase of a GS cell line, leading to reduced antibody expression and lower antibody yields. The experimental results and the statistical analysis (ANOVA) indicated that additions of glutamine and asparagine in the basal and feed media were effective to buffer the cell culture pH, reduce lactate generation, maintain a higher cell viability profile, and improve antibody productivity. In bench‐top bioreactors, glutamine and asparagine supplementation helped to prevent cell death, improve antibody yield, and reduce base usage. Glutamine is normally excluded from culture media for GS cell lines to prevent the bypass of selection pressure. In this study, however, the addition of glutamine did not affect cell population homogeneity, protein quality, or decrease antibody yield of two GS cell lines. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1457–1468, 2014  相似文献   

13.
14.
15.
A set of anti-apoptotic genes were over-expressed, either singly or in combination, in an effort to develop robust Chinese Hamster Ovary host cell lines suitable for manufacturing biotherapeutics. High-throughput screening of caspase 3/7 activity enabled a rapid selection of transfectants with reduced caspase activity relative to the host cell line. Transfectants with reduced caspase 3/7 activity were then tested for improved integrated viable cell count (IVCC), a function of peak viable cell density and longevity. The maximal level of improvement in IVCC could be achieved by over-expression of either single anti-apoptotic genes, e.g., Bcl-2Δ (a mutated variant of Bcl-2) or Bcl-XL, or a combination of two or three anti-apoptotic genes, e.g., E1B-19K, Aven, and XIAPΔ. These cell lines yielded higher transient antibody production and a greater number of stable clones with high antibody yields. In a 5 L fed-batch bioreactor system, BΔ31-1, a stable clone expressing Bcl-2Δ, had a product titer that was 180% as compared to an optimal clone (Con-1) from the control cell line. Although lactate accumulated to more than 5 g/L in the control culture, its concentration was reduced in the anti-apoptotic BΔ31-1 cultures to below 1 g/L, confirming our earlier findings that cells over-expressing anti-apoptotic genes consume the lactate that would otherwise accumulate as a by-product in the culture medium. To the best of our knowledge, this is the first study to use the high throughput caspase screening method to identify CHO host cell lines with superior anti-apoptotic characteristics.  相似文献   

16.
Generating stable, high-producing mammalian cell lines is a major bottleneck in the manufacture of recombinant therapeutic proteins. Conventional gene transfer methods for cell line generation rely on random plasmid integration, resulting in unpredictable and highly variable levels of transgene expression. As a consequence, a large number of stably transfected cells must be analyzed to recover a few high-producing clones. Here we present an alternative gene transfer method for cell line generation based on transgene integration mediated by the piggyBac (PB) transposon. Recombinant Chinese hamster ovary (CHO) cell lines expressing a tumor necrosis factor receptor:Fc fusion protein were generated either by PB transposition or by conventional transfection. Polyclonal populations and isolated clonal cell lines were characterized for the level and stability of transgene expression for up to 3 months in serum-free suspension culture. Pools of transposed cells produced up to fourfold more recombinant protein than did the pools generated by standard transfection. For clonal cell lines, the frequency of high-producers was greater following transposition as compared to standard transfection, and these clones had a higher volumetric productivity and a greater number of integrated transgenes than did those generated by standard transfection. In general, the volumetric productivity of the cell pools and individual cell lines generated by transposition was stable for up to 3 months in the absence of selection. Our results indicate that the PB transposon supports the generation of cell lines with high and stable transgene expression at an elevated frequency relative to conventional transfection. Thus, PB-mediated gene delivery is expected to reduce the extent of recombinant cell line screening.  相似文献   

17.
A mycoplasma contamination event in a biomanufacturing facility can result in costly cleanups and potential drug shortages. Mycoplasma may survive in mammalian cell cultures with only subtle changes to the culture and penetrate the standard 0.2-µm filters used in the clarification of harvested cell culture fluid. Previously, we reported a study regarding the ability of Mycoplasma arginini to persist in a single-use, perfusion rocking bioreactor system containing a Chinese hamster ovary (CHO) DG44 cell line expressing a model monoclonal immunoglobulin G 1 (IgG1) antibody. Our previous work showed that M. arginini affects CHO cell growth profile, viability, nutrient consumption, oxygen use, and waste production at varying timepoints after M. arginini introduction to the culture. Careful evaluation of certain identified process parameters over time may be used to indicate mycoplasma contamination in CHO cell cultures in a bioreactor before detection from a traditional method. In this report, we studied the changes in the IgG1 product quality produced by CHO cells considered to be induced by the M. arginini contamination events. We observed changes in critical quality attributes correlated with the duration of contamination, including increased acidic charge variants and high mannose species, which were further modeled using principal component analysis to explore the relationships among M. arginini contamination, CHO cell growth and metabolites, and IgG1 product quality attributes. Finally, partial least square models using NIR spectral data were used to establish predictions of high levels (≥104 colony-forming unit [CFU/ml]) of M. arginini contamination, but prediction of levels below 104 CFU/ml were not reliable. Contamination of CHO cells with M. arginini resulted in significant reduction of antibody product quality, highlighting the importance of rapid microbiological testing and mycoplasma testing during particularly long upstream bioprocesses to ensure product safety and quality.  相似文献   

18.
To investigate the effect of culture temperature on erythropoietin (EPO) production and glycosylation in recombinant Chinese hamster ovary (CHO) cells, we cultivated CHO cells using a perfusion bioreactor. Cells were cultivated at 37 degrees C until viable cell concentration reached 1 x 10(7) cells/mL, and then culture temperature was shifted to 25 degrees C, 28 degrees C, 30 degrees C, 32 degrees C, 37 degrees C (control), respectively. Lowering culture temperature suppressed cell growth but was beneficial to maintain high cell viability for a longer period. In a control culture at 37 degrees C, cell viability gradually decreased and fell below 80% on day 18 while it remained over 90% throughout the culture at low culture temperature. The cumulative EPO production and specific EPO productivity, q(EPO), increased at low culture temperature and were the highest at 32 degrees C and 30 degrees C, respectively. Interestingly, the cumulative EPO production at culture temperature below 32 degrees C was not as high as the cumulative EPO production at 32 degrees C although the q(EPO) at culture temperature below 32 degrees C was comparable or even higher than the q(EPO) at 32 degrees C. This implies that the beneficial effect of lowering culture temperature below 32 degrees C on q(EPO) is outweighed by its detrimental effect on the integral of viable cells. The glycosylation of EPO was evaluated by isoelectric focusing, normal phase HPLC and anion exchange chromatography analyses. The quality of EPO at 32 degrees C in regard to acidic isoforms, antennary structures and sialylated N-linked glycans was comparable to that at 37 degrees C. However, at culture temperatures below 32 degrees C, the proportions of acidic isoforms, tetra-antennary structures and tetra-sialylated N-linked glycans were further reduced, suggesting that lowering culture temperature below 32 degrees C negatively affect the quality of EPO. Thus, taken together, cell culture at 32 degrees C turned out to be the most satisfactory since it showed the highest cumulative EPO production, and moreover, EPO quality at 32 degrees C was not deteriorated as obtained at 37 degrees C.  相似文献   

19.
20.
To investigate the effect of dextran sulfate (DS), a widely used anti‐aggregation agent, on cell growth and monoclonal antibody (mAb) production including the quality attributes, DS with the three different MWs (4,000 Da, 15,000 Da, and 40,000 Da) at various concentrations (up to 1 g/L) was added to suspension cultures of two different recombinant CHO (rCHO) cell lines producing mAb, SM‐0.025 and CS13‐1.00. For both cell lines, the addition of DS, regardless of the MW and concentration of DS used, improved cell growth and viability in the decline phase of growth. However, it increased mAb production only in the CS13‐1.00 cells. Among the three different MWs, 40,000 Da DS was most effective in attenuating cell aggregation during the cultures of CS13‐1.00 cells, and showed the highest maximum mAb concentration. For SM‐0.025 cells, it significantly decreased specific mAb productivity, particularly at a high concentration of DS. Overall, DS addition did not negatively affect the quality attributes of mAbs (aggregation, charge variation, and glycosylation), though its efficacy on mAb quality depended on the MW and concentration of DS and cell lines. For both cell lines, the addition of DS did not affect N‐glycosylation of mAbs and decreased basic charge variants in mAbs. For CS13‐1.00 cells, the mAb monomer increased with the addition of 40,000 Da DS at 0.3–1.0 g/L. Taken together, to maximize the beneficial effect of DS addition on mAb production, the optimal MW and concentration of DS should be determined for each specific rCHO cell line. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1113–1122, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号