首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Contact zones between species provide a unique opportunity to test whether taxa can hybridize or not. Cross‐breeding or hybridization between closely related taxa can promote gene flow (introgression) between species, adaptation, or even speciation. Though hybridization events may be short‐lived and difficult to detect in the field, genetic data can provide information about the level of introgression between closely related taxa. Hybridization can promote introgression between species, which may be an important evolutionary mechanism for either homogenization (reversing initial divergence between species) or reproductive isolation (potentially leading to speciation). Here, we used thousands of genetic markers from nuclear DNA to detect hybridization between two parapatric frog species (Rana boylii and Rana sierrae) in the Sierra Nevada of California. Based on principal components analysis, admixture, and analysis of heterozygosity at species diagnostic SNPs, we detected two F1 hybrid individuals in the Feather River basin, as well as a weak signal of introgression and gene flow between the frog species compared with frog populations from two other adjacent watersheds. This study provides the first documentation of hybridization and introgression between these two species, which are of conservation concern.  相似文献   

2.
    
Genetic tools that identify species from trace DNA samples could supplement traditional survey methods to clarify distributional limits of rare species. For species with legal habitat protection, elevational limits of distributions are used to determine where management actions may affect endangered species. The endangered Sierra Nevada yellow-legged frog (Rana sierrae) generally is found down to 1,370 m, but in the Plumas National Forest, California, USA, there are a number of historical records below this elevation, resulting in protections extending to 1,067 m. This species is phenotypically similar to the foothill yellow-legged frog (R. boylii), with which it occasionally hybridizes. We used a combination of genetic methods to investigate the fine-scale distribution of the Sierra Nevada yellow-legged frog in the Plumas National Forest. We collected and analyzed environmental DNA (eDNA) samples from all accessible lower elevation sites with records of Sierra Nevada yellow-legged frog (n = 17) and swabbed 220 individuals for genetic identification from 2016–2018 to clarify the distribution of this endangered species. We created a climatic suitability model using the validated Sierra Nevada yellow-legged frog records and current (1970–2000) climate models to assess additional highly suitable localities for Sierra Nevada yellow-legged frog presence using eDNA capture. We did not confirm detection of Sierra Nevada yellow-legged frog eDNA at any historical sites and identified all swabbed individuals from below 1,370 m (n = 144) as foothill yellow-legged frogs. We located a new Sierra Nevada yellow-legged frog site (at 1,919 m) during surveys guided by the climatic suitability model. It does not appear after extensive eDNA and genetic sampling that the Sierra Nevada yellow-legged frog occurs below 1,370 m in this portion of their range at present. Our results show that eDNA sampling can be used as an effective management tool to evaluate historical locations and previously unknown suitable localities for current presence of a species of interest. © 2021 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.  相似文献   

3.
    
Symbiotic microbial communities are important for host health, but the processes shaping these communities are poorly understood. Understanding how community assembly processes jointly affect microbial community composition is limited because inflexible community models rely on rejecting dispersal and drift before considering selection. We developed a flexible community assembly model based on neutral theory to ask: How do dispersal, drift and selection concurrently affect the microbiome across environmental gradients? We applied this approach to examine how a fungal pathogen affected the assembly processes structuring the amphibian skin microbiome. We found that the rejection of neutrality for the amphibian microbiome across a fungal gradient was not strictly due to selection processes, but was also a result of species‐specific changes in dispersal and drift. Our modelling framework brings the qualitative recognition that niche and neutral processes jointly structure microbiomes into quantitative focus, allowing for improved predictions of microbial community turnover across environmental gradients.  相似文献   

4.
5.
6.
    
Patterns of local adaptation at fine spatial scales are central to understanding how evolution proceeds, and are essential to the effective management of economically and ecologically important forest tree species. Here, we employ single and multilocus analyses of genetic data (= 116 231 SNPs) to describe signatures of fine‐scale adaptation within eight whitebark pine (Pinus albicaulis Engelm.) populations across the local extent of the environmentally heterogeneous Lake Tahoe Basin, USA. We show that despite highly shared genetic variation (FST = 0.0069), there is strong evidence for adaptation to the rain shadow experienced across the eastern Sierra Nevada. Specifically, we build upon evidence from a common garden study and find that allele frequencies of loci associated with four phenotypes (mean = 236 SNPs), 18 environmental variables (mean = 99 SNPs), and those detected through genetic differentiation (n = 110 SNPs) exhibit significantly higher signals of selection (covariance of allele frequencies) than could be expected to arise, given the data. We also provide evidence that this covariance tracks environmental measures related to soil water availability through subtle allele frequency shifts across populations. Our results replicate empirical support for theoretical expectations of local adaptation for populations exhibiting strong gene flow and high selective pressures and suggest that ongoing adaptation of many P. albicaulis populations within the Lake Tahoe Basin will not be constrained by the lack of genetic variation. Even so, some populations exhibit low levels of heritability for the traits presumed to be related to fitness. These instances could be used to prioritize management to maintain adaptive potential. Overall, we suggest that established practices regarding whitebark pine conservation be maintained, with the additional context of fine‐scale adaptation.  相似文献   

7.
    
While disease‐induced extinction is generally considered rare, a number of recently emerging infectious diseases with load‐dependent pathology have led to extinction in wildlife populations. Transmission is a critical factor affecting disease‐induced extinction, but the relative importance of transmission compared to load‐dependent host resistance and tolerance is currently unknown. Using a combination of models and experiments on an amphibian species suffering extirpations from the fungal pathogen Batrachochytrium dendrobatidis (Bd), we show that while transmission from an environmental Bd reservoir increased the ability of Bd to invade an amphibian population and the extinction risk of that population, Bd‐induced extinction dynamics were far more sensitive to host resistance and tolerance than to Bd transmission. We demonstrate that this is a general result for load‐dependent pathogens, where non‐linear resistance and tolerance functions can interact such that small changes in these functions lead to drastic changes in extinction dynamics.  相似文献   

8.
Giant sequoia (Sequoiadendron giganteum) is an iconic conifer that lives in relict populations on the western slopes of the California Sierra Nevada. In these settings, it is unusual among the dominant trees in that it associates with arbuscular mycorrhizal fungi rather than ectomycorrhizal fungi. However, it is unclear whether differences in microbial associations extend more broadly to nonmycorrhizal components of the soil microbial community. To address this question, we used next‐generation amplicon sequencing to characterize bacterial/archaeal and fungal microbiomes in bulk soil (0–5 cm) beneath giant sequoia and co‐occurring sugar pine (Pinus lambertiana) individuals. We did this across two groves with distinct parent material in Yosemite National Park, USA. We found tree‐associated differences were apparent despite a strong grove effect. Bacterial/archaeal richness was greater beneath giant sequoia than sugar pine, with a core community double the size. The tree species also harbored compositionally distinct fungal communities. This pattern depended on grove but was associated with a consistently elevated relative abundance of Hygrocybe species beneath giant sequoia. Compositional differences between host trees correlated with soil pH and soil moisture. We conclude that the effects of giant sequoia extend beyond mycorrhizal mutualists to include the broader community and that some but not all host tree differences are grove‐dependent.  相似文献   

9.
    
Although the effects of shifting fire regimes on bird populations have been recognized as important to ecology and conservation, the consequences of fire for trophic interactions of avian species – and raptors in particular – remain relatively unknown. Here, we found that within national parks with long‐standing (40+ years) fire management programmes, California Spotted Owls Strix occidentalis occidentalis consumed predominantly Woodrats Neotoma spp. and Pocket Gophers Thomomys spp.; however, in contrast to our predictions, when their territories experienced more extensive and frequent fire, Spotted Owls consumed proportionally more Flying Squirrels Glaucomys oregonensis. We hypothesize this finding could have been driven by either changes to prey abundance following fires (e.g. increases in flying squirrels) or changes to prey availability (e.g. shifts in forest structure or flying squirrel spatial distribution that increased predation upon them by owls). Our work thus demonstrates that fire may have unexpected consequences for the trophic interactions of raptor species and provides valuable information for the conservation of Spotted Owls in fire‐prone forest landscapes.  相似文献   

10.
    
Unraveling the relationships between ecological, functional traits and genetic diversity of narrow endemic plants provide opportunities for understanding how evolutionary processes operate over local spatial scales and ultimately how diversity is created and maintained. To explore these aspects in Sierra Nevada, the core of the Mediterranean Betic‐Rifean hotspot, we have analyzed nuclear DNA microsatellite diversity and a set of biological and environmental factors (physicochemical soil parameters, floral traits, and community composition) in two strictly endemic taxa from dolomite outcrops of Sierra Nevada (Helianthemum pannosum and H. apenninum subsp. estevei) and two congeneric widespread taxa (H. cinereum subsp. rotundifolium and H. apenninum subsp. apenninum) that further belong to two different lineages (subgenera) of Helianthemum. We obtained rather unexpected results contrasting with the theory: (a) The narrow endemic taxa showed higher values of genetic diversity as well as higher average values of pollen production per flower and pollen‐to‐ovule ratio than their widespread relatives; and (b) the two taxa of subg. Helianthemum, with larger corollas, approach herkogamy and higher pollen production than the two taxa of subg. Plectolobum, displayed lower genetic diversity and higher values of inbreeding. Altogether, these results disclose how genetic diversity may be affected simultaneously by a large number of intrinsic and extrinsic factors, especially in Pleistocene glacial refugia in mountains where the spatial context harbors a great ecological heterogeneity. On the other hand, differences in mating system and the significant effect of the substrate profile, both being highly diverse in the genus Helianthemum, in the genetic variability illustrate about the importance of these two factors in the diversification and species differentiation of this paradigmatic genus in the Mediterranean and open the field to formulate and test new hypotheses of local adaptation, trait evolution, and habitat diversification.  相似文献   

11.
    
There is increasing evidence for morphological change in response to recent environmental change, but how this relates to fluctuations in geographic range remains unclear. We measured museum specimens from two time periods (1902–1950 and 2000–2008) that vary significantly in climate to assess if and how two high elevation contracting species of ground squirrels in the Sierra Nevada of California, Belding's ground squirrel (Urocitellus beldingi) and the golden‐mantled ground squirrel (Callospermophilus lateralis), and one lower elevation, stable species, the California ground squirrel (Otospermophilus beecheyi), have responded morphologically to changes over the last century. We measured skull length (condylobasal length), an ontogenetically more labile trait highly correlated with body size, and maxillary toothrow length, a more developmentally constrained trait predictive of skull shape. C. lateralis and U. beldingi, both obligate hibernators, have increased in body size, but have not changed in shape. In contrast, O. beecheyi, which only hibernates in parts of its range, has shown no significant change in either morphometric trait. The increase in body size in the higher elevation species, hypothesized to be a plastic effect due to a longer growing season and thus prolonged food availability, opposes the expected direction of selection for decreased body size under chronic warming. Our study supports that population contraction is related to physiological rather than nutritional constraints.  相似文献   

12.
    
  1. When dams or climate change alter the thermal regimes of rivers, conditions can shift outside optimal ranges for aquatic poikilothermic vertebrates. Plasticity in thermal performance and preference, however, may allow temperature‐vulnerable fauna to persist under challenging conditions.
  2. To determine the effects of thermal regime on Rana boylii (Ranidae), a threatened frog species endemic to rivers of California and Oregon, we quantified tadpole thermal preferences and performance in relation to thermal conditions. We monitored temperature and censused populations across a coastal to inland cline in six catchments where dams have altered thermal environments in close proximity to river reaches with natural conditions.
  3. We found geographic variation in population distribution and abundance based on river size combined with water temperature. The large inland rivers that supported breeding frogs, although cooler in spring due to snowmelt, became warmer during the summer than occupied coastal sites. Inland populations were constrained to reaches where the average temperature over the warmest 30 days ranged from 17.6 to 24.2°C, higher than coastal rainfall‐driven systems where averages ranged from 15.7 to 22.0°C. Frogs in rivers with hypolimnetic‐release dams bred in colder waters than they did in free‐flowing rivers.
  4. Common‐garden and field translocation experiments revealed local adaptations in larval growth and phenotypically plastic thermoregulatory behaviour. Tadpoles from all rivers had a positive linear growth response to temperature, but individuals from inland rivers displayed intrinsically higher growth rates. Consistent with a counter‐gradient model of selection in which the response to temperature change is in the opposite direction of the change, individuals from cooler rivers selected warmer temperatures. When reared under common conditions, however, tadpoles showed similar temperature preferences regardless of source river.
  5. Our results suggest a role for local growth rate adaptation in structuring the distribution of Rana boylii. Plastic thermoregulatory behaviour by tadpoles may explain how small populations are able to persist where dams release cold water. Management of edgewater habitats to increase the availability of warm micro‐sites may ameliorate this impact.
  相似文献   

13.
    
Recent anthropogenic climate change and the exponential increase over the past few decades of Saharan dust deposition, containing ecologically important inputs of phosphorus (P) and calcium (Ca), are potentially affecting remote aquatic ecosystems. In this study, we examine changes in cladoceran assemblage composition and chlorophyll‐a concentrations over the past ~150 years from high‐resolution, well‐dated sediment cores retrieved from six remote high mountain lakes in the Sierra Nevada Mountains of Southern Spain, a region affected by Saharan dust deposition. In each lake, marked shifts in cladoceran assemblages and chlorophyll‐a concentrations in recent decades indicate a regional‐scale response to climate and Saharan dust deposition. Chlorophyll‐a concentrations have increased since the 1970s, consistent with a response to rising air temperatures and the intensification of atmospheric deposition of Saharan P. Similar shifts in cladoceran taxa across lakes began over a century ago, but have intensified over the past ~50 years, concurrent with trends in regional air temperature, precipitation, and increased Saharan dust deposition. An abrupt increase in the relative abundance of the benthic cladoceran Alona quadrangularis at the expense of Chydorus sphaericus, and a significant increase in Daphnia pulex gr. was a common trend in these softwater lakes. Differences in the magnitude and timing of these changes are likely due to catchment and lake‐specific differences. In contrast with other alpine lakes that are often affected by acid deposition, atmospheric Ca deposition appears to be a significant explanatory factor, among others, for the changes in the lake biota of Sierra Nevada that has not been previously considered. The effects observed in Sierra Nevada are likely occurring in other Mediterranean lake districts, especially in softwater, oligotrophic lakes. The predicted increases in global temperature and Saharan dust deposition in the future will further impact the ecological condition of these ecosystems.  相似文献   

14.
    
Wildlife data gathered by different monitoring techniques are often combined to estimate animal density. However, methods to check whether different types of data provide consistent information (i.e., can information from one data type be used to predict responses in the other?) before combining them are lacking. We used generalized linear models and generalized linear mixed-effects models to relate camera trap probabilities for marked animals to independent space use from telemetry relocations using 2 years of data for fishers (Pekania pennanti) as a case study. We evaluated (1) camera trap efficacy by estimating how camera detection probabilities are related to nearby telemetry relocations and (2) whether home range utilization density estimated from telemetry data adequately predicts camera detection probabilities, which would indicate consistency of the two data types. The number of telemetry relocations within 250 and 500 m from camera traps predicted detection probability well. For the same number of relocations, females were more likely to be detected during the first year. During the second year, all fishers were more likely to be detected during the fall/winter season. Models predicting camera detection probability and photo counts solely from telemetry utilization density had the best or nearly best Akaike Information Criterion (AIC), suggesting that telemetry and camera traps provide consistent information on space use. Given the same utilization density, males were more likely to be photo-captured due to larger home ranges and higher movement rates. Although methods that combine data types (spatially explicit capture–recapture) make simple assumptions about home range shapes, it is reasonable to conclude that in our case, camera trap data do reflect space use in a manner consistent with telemetry data. However, differences between the 2 years of data suggest that camera efficacy is not fully consistent across ecological conditions and make the case for integrating other sources of space-use data.  相似文献   

15.
    
Recent studies have demonstrated that detection of environmental DNA (eDNA) from aquatic vertebrates in water bodies is possible. The Burmese python, Python bivittatus, is a semi‐aquatic, invasive species in Florida where its elusive nature and cryptic coloration make its detection difficult. Our goal was to develop a diagnostic PCR to detect P. bivittatus from water‐borne eDNA, which could assist managers in monitoring this invasive species. First, we used captive P. bivittatus to determine whether reptilian DNA could be isolated and amplified from water samples. We also evaluated the efficacy of two DNA isolation methods and two DNA extraction kits commonly used in eDNA preparation. A fragment of the mitochondrial cytochrome b gene from P. bivittatus was detected in all water samples isolated with the sodium acetate precipitate and the QIAamp DNA Micro Kit. Next, we designed P. bivittatus‐specific primers and assessed the degradation rate of eDNA in water. Our primers did not amplify DNA from closely related species, and we found that P. bivittatus DNA was consistently detectable up to 96 h. Finally, we sampled water from six field sites in south Florida. Samples from five sites, where P. bivittatus has been observed, tested positive for eDNA. The final site was negative and had no prior documented evidence of P. bivittatus. This study shows P. bivittatus eDNA can be isolated from water samples; thus, this method is a new and promising technique for the management of invasive reptiles.  相似文献   

16.
  总被引:3,自引:0,他引:3  
Environmental DNA (eDNA) detection has emerged as a powerful tool for monitoring aquatic organisms, but much remains unknown about the dynamics of aquatic eDNA over a range of environmental conditions. DNA concentrations in streams and rivers will depend not only on the equilibrium between DNA entering the water and DNA leaving the system through degradation, but also on downstream transport. To improve understanding of the dynamics of eDNA concentration in lotic systems, we introduced caged trout into two fishless headwater streams and took eDNA samples at evenly spaced downstream intervals. This was repeated 18 times from mid‐summer through autumn, over flows ranging from approximately 1–96 L/s. We used quantitative PCR to relate DNA copy number to distance from source. We found that regardless of flow, there were detectable levels of DNA at 239.5 m. The main effect of flow on eDNA counts was in opposite directions in the two streams. At the lowest flows, eDNA counts were highest close to the source and quickly trailed off over distance. At the highest flows, DNA counts were relatively low both near and far from the source. Biomass was positively related to eDNA copy number in both streams. A combination of cell settling, turbulence and dilution effects is probably responsible for our observations. Additionally, during high leaf deposition periods, the presence of inhibitors resulted in no amplification for high copy number samples in the absence of an inhibition‐releasing strategy, demonstrating the necessity to carefully consider inhibition in eDNA analysis.  相似文献   

17.
    
Given their positioning and biological productivity, estuaries have long represented key providers of ecosystem services and consequently remain under remarkable pressure from numerous forms of anthropogenic impact. The monitoring of fish communities in space and time is one of the most widespread and established approaches to assess the ecological status of estuaries and other coastal habitats, but traditional fish surveys are invasive, costly, labour intensive and highly selective. Recently, the application of metabarcoding techniques, on either sediment or aqueous environmental DNA, has rapidly gained popularity. Here, we evaluate the application of a novel, high‐throughput DNA‐based monitoring tool to assess fish diversity, based on the analysis of the gut contents of a generalist predator/scavenger, the European brown shrimp, Crangon crangon. Sediment and shrimp samples were collected from eight European estuaries, and DNA metabarcoding (using both 12S and COI markers) was carried out to infer fish assemblage composition. We detected 32 teleost species (16 and 20, for 12S and COI, respectively). Twice as many species were recovered using metabarcoding than by traditional net surveys. By comparing and interweaving trophic, environmental DNA and traditional survey‐based techniques, we show that the DNA‐assisted gut content analysis of a ubiquitous, easily accessible, generalist species may serve as a powerful, rapid and cost‐effective tool for large‐scale, routine estuarine biodiversity monitoring.  相似文献   

18.
    
In recent years, animal ethics issues have led researchers to explore nondestructive methods to access materials for genetic studies. Cicada exuviae are among those materials because they are cast skins that individuals left after molt and are easily collected. In this study, we aim to identify the most efficient extraction method to obtain high quantity and quality of DNA from cicada exuviae. We compared relative DNA yield and purity of six extraction protocols, including both manual protocols and available commercial kits, extracting from four different exoskeleton parts. Furthermore, amplification and sequencing of genomic DNA were evaluated in terms of availability of sequencing sequence at the expected genomic size. Both the choice of protocol and exuvia part significantly affected DNA yield and purity. Only samples that were extracted using the PowerSoil DNA Isolation kit generated gel bands of expected size as well as successful sequencing results. The failed attempts to extract DNA using other protocols could be partially explained by a low DNA yield from cicada exuviae and partly by contamination with humic acids that exist in the soil where cicada nymphs reside before emergence, as shown by spectroscopic measurements. Genomic DNA extracted from cicada exuviae could provide valuable information for species identification, allowing the investigation of genetic diversity across consecutive broods, or spatiotemporal variation among various populations. Consequently, we hope to provide a simple method to acquire pure genomic DNA applicable for multiple research purposes.  相似文献   

19.
    
We studied home range and habitat selection of radio-marked adult California spotted owls (Strix occidentalis occidentalis) randomly selected from among the breeding population of owls in the central Sierra Nevada, California from June to October 2006. The most parsimonious home-range estimate for our data was 555 ha (SE = 100 ha). Home-range size was positively correlated with the number of vegetation patches in the home range (habitat heterogeneity). We used resource selection ratios to examine selection of vegetation types by owls within our study area. Owl home ranges contained a high proportion of mature conifer forest, relative to its availability, although the confidence interval for this estimate overlapped one. We also used resource selection functions (RSF) to examine owl foraging habitat selection. Relative probability of selection of foraging habitat was correlated with vegetation classes, patch size, and their interaction. Owls showed highest selection rates for large patches (>10 ha) of pole-sized coniferous forest. Our results suggested that spotted owls in the central Sierra Nevada used habitat that contained a high proportion of mature conifer forest at the home-range scale, but at a finer scale (foraging site selection) owls used other vegetation classes interspersed among mature forest patches, consistent with our hypothesis that spotted owls may use other forest types besides old growth and mature forests when foraging. Our study provides an unbiased estimate of habitat use by spotted owls in the central Sierra Nevada. Our results suggest that forest managers continue to protect remaining mature and old-growth forests in the central Sierra Nevada because owl home ranges contain high proportions of these habitats. However, our results also showed that owls used younger stands as foraging habitat so that landscape heterogeneity, with respect to cover types, may be an important consideration for management but we did not attempt to relate our findings to fitness of owls. Thus management for some level of landscape heterogeneity for the benefit of owls should proceed with caution or under an adaptive management framework. © 2011 The Wildlife Society.  相似文献   

20.
    
Environmental DNA (eDNA) methods for detecting and estimating abundance of aquatic species are emerging rapidly, but little is known about how processes such as secretion rate, environmental degradation, and time since colonization or extirpation from a given site affect eDNA measurements. Using stream‐dwelling salamanders and quantitative PCR (qPCR) analysis, we conducted three experiments to assess eDNA: (i) production rate; (ii) persistence time under different temperature and light conditions; and (iii) detectability and concentration through time following experimental introduction and removal of salamanders into previously unoccupied streams. We found that 44–50 g individuals held in aquaria produced 77 ng eDNA/h for 2 h, after which production either slowed considerably or began to equilibrate with degradation. eDNA in both full‐sun and shaded treatments degraded exponentially to <1% of the original concentration after 3 days. eDNA was no longer detectable in full‐sun samples after 8 days, whereas eDNA was detected in 20% of shaded samples after 11 days and 100% of refrigerated control samples after 18 days. When translocated into unoccupied streams, salamanders were detectable after 6 h, but only when densities were relatively high (0.2481 individuals/m2) and when samples were collected within 5 m of the animals. Concentrations of eDNA detected were very low and increased steadily from 6–24 h after introduction, reaching 0.0022 ng/L. Within 1 h of removing salamanders from the stream, eDNA was no longer detectable. These results suggest that eDNA detectability and concentration depend on production rates of individuals, environmental conditions, density of animals, and their residence time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号