共查询到20条相似文献,搜索用时 15 毫秒
1.
Carel P. Van Schaik 《Evolutionary anthropology》2014,23(2):65-75
The human brain is about three times as large as that of our closest living relatives, the great apes. Overall brain size is a good predictor of cognitive performance in a variety of tests in primates. 1 , 2 Therefore, hypotheses explaining the evolution of this remarkable difference have attracted much interest. In this review, we give an overview of the current evidence from comparative studies testing these hypotheses. If cognitive benefits are diverse and ubiquitous, it is possible that most of the variation in relative brain size among extant primates is explained by variation in the ability to avoid the fitness costs of increased brain size (allocation trade‐offs and increased minimum energy needs). This is indeed what we find, suggesting that an energetic perspective helps to complement approaches to explain variation in brain size that postulate cognitive benefits. The expensive brain framework also provides a coherent scenario for how these factors may have shaped early hominin brain expansion. 相似文献
2.
Black plumage is expected to absorb and retain more heat and provide better protection against UV radiation compared with lighter plumages. Black plumage is common in species of the genera Turdus and Platycichla that inhabit highlands across different regions of the world. Considering this geographical recurrent pattern we tested the hypothesis that black plumage in these two genera has evolved as a co‐adaptive response to inhabiting highlands, reconstructing ancestral character states for plumage and altitudinal distribution using maximum‐likelihood methods, and a Pagel's multistate discrete method. For these analyses, we used a phylogeny based on mitochondrial and nuclear DNA regions that included 60 of the 66 recognized species in the genera Turdus and Platycichla. We found that black‐plumage coloration evolved independently on eight occasions within these two genera, and species with black plumage occur more often at highlands. Our results support the hypothesis that black‐plumage is adaptative in highlands; but, studies in other bird groups with black‐plumage inhabiting at the same elevations will provide evidence for this adaptive hypothesis or if the evolution of black‐plumage in other groups is explained by other evolutionary forces. 相似文献
3.
Claudie Pageau Jared Sonnleitner Christopher M. Tonra Mateen Shaikh Matthew W. Reudink 《Ecology and evolution》2021,11(19):13247
Molt is critical for birds as it replaces damaged feathers and worn plumage, enhancing flight performance, thermoregulation, and communication. In passerines, molt generally occurs on the breeding grounds during the postbreeding period once a year. However, some species of migrant passerines that breed in the Nearctic and Western Palearctic regions have evolved different molting strategies that involve molting on the overwintering grounds. Some species forego molt on the breeding grounds and instead complete their prebasic molt on the overwintering grounds. Other species molt some or all feathers a second time (prealternate molt) during the overwintering period. Using phylogenetic analyses, we explored the potential drivers of the evolution of winter molts in Nearctic and Western Palearctic breeding passerines. Our results indicate an association between longer photoperiods and the presence of prebasic and prealternate molts on the overwintering grounds for both Nearctic and Western Palearctic species. We also found a relationship between prealternate molt and generalist and water habitats for Western Palearctic species. Finally, the complete prealternate molt in Western Palearctic passerines was linked to longer days on the overwintering grounds and longer migration distance. Longer days may favor the evolution of winter prebasic molt by increasing the time window when birds can absorb essential nutrients for molt. Alternatively, for birds undertaking a prealternate molt at the end of the overwintering period, longer days may increase exposure to feather‐degrading ultra‐violet radiation, necessitating the replacement of feathers. Our study underlines the importance of the overwintering grounds in the critical process of molt for many passerines that breed in the Nearctic and Western Palearctic regions. 相似文献
4.
Phylogenetic signal is the tendency for closely related species to display similar trait values as a consequence of their phylogenetic proximity. Ecologists and evolutionary biologists are becoming increasingly interested in studying the phylogenetic signal and the processes which drive patterns of trait values in the phylogeny. Here, we present a new R package, phylosignal which provides a collection of tools to explore the phylogenetic signal for continuous biological traits. These tools are mainly based on the concept of autocorrelation and have been first developed in the field of spatial statistics. To illustrate the use of the package, we analyze the phylogenetic signal in pollution sensitivity for 17 species of diatoms. 相似文献
5.
The elaborate songs of songbirds are frequent models for investigating the evolution of animal signals. However, few previous studies have attempted to reconstruct historical changes in song evolution using a phylogenetic comparative approach. In particular, no comparative studies of bird song have used a large number of vocal characters and a well-supported, independently derived phylogeny. We identified 32 features in the complex vocal displays of male oropendolas (genera Psarocolius, Gymnostinops, and Ocyalus) that are relatively invariant within taxa and mapped these characters onto a robust molecular phylogeny of the group. Our analysis revealed that many aspects of oropendola song are surprisingly evolutionarily conservative and thus are potentially useful characters for reconstructing historical patterns. Of the characters that varied among taxa, nearly two thirds (19 of 29) showed no evidence of evolutionary convergence or reversal when mapped onto the tree, which was reflected in a high overall consistency index (CI = 0.78) and retention index (RI = 0.88). Some reconstructed patterns provided evidence of selection on these signals. For example, rapid divergence of the songs of the Montezuma oropendola, Gymnostinops montezuma, from those of closely related taxa suggests the recent influence of strong sexual selection. In general, our results provide insights into the mode of vocal evolution in songbirds and suggest that complex vocalizations can provide information about phylogeny. Based on this evidence, we use song characters to estimate the phylogenetic affinities of three oropendola taxa for which molecular data are not yet available. 相似文献
6.
Raquel Mendes Vera L. Nunes Eduardo Marabuto Gonçalo J. Costa Sara E. Silva Octávio S. Paulo Paula C. Simões 《Journal of evolutionary biology》2023,36(2):461-479
Divergence in acoustic signals may have a crucial role in the speciation process of animals that rely on sound for intra-specific recognition and mate attraction. The acoustic adaptation hypothesis (AAH) postulates that signals should diverge according to the physical properties of the signalling environment. To be efficient, signals should maximize transmission and decrease degradation. To test which drivers of divergence exert the most influence in a speciose group of insects, we used a phylogenetic approach to the evolution of acoustic signals in the cicada genus Tettigettalna, investigating the relationship between acoustic traits (and their mode of evolution) and body size, climate and micro-/macro-habitat usage. Different traits showed different evolutionary paths. While acoustic divergence was generally independent of phylogenetic history, some temporal variables’ divergence was associated with genetic drift. We found support for ecological adaptation at the temporal but not the spectral level. Temporal patterns are correlated with micro- and macro-habitat usage and temperature stochasticity in ways that run against the AAH predictions, degrading signals more easily. These traits are likely to have evolved as an anti-predator strategy in conspicuous environments and low-density populations. Our results support a role of ecological selection, not excluding a likely role of sexual selection in the evolution of Tettigettalna calling songs, which should be further investigated in an integrative approach. 相似文献
7.
Karan J. Odom Marcelo Araya-Salas Janelle L. Morano Russell A. Ligon Gavin M. Leighton Conor C. Taff Anastasia H. Dalziell Alexis C. Billings Ryan R. Germain Michael Pardo Luciana Guimarães de Andrade Daniela Hedwig Sara C. Keen Yu Shiu Russell A. Charif Michael S. Webster Aaron N. Rice 《Biological reviews of the Cambridge Philosophical Society》2021,96(4):1135-1159
Animals produce a wide array of sounds with highly variable acoustic structures. It is possible to understand the causes and consequences of this variation across taxa with phylogenetic comparative analyses. Acoustic and evolutionary analyses are rapidly increasing in sophistication such that choosing appropriate acoustic and evolutionary approaches is increasingly difficult. However, the correct choice of analysis can have profound effects on output and evolutionary inferences. Here, we identify and address some of the challenges for this growing field by providing a roadmap for quantifying and comparing sound in a phylogenetic context for researchers with a broad range of scientific backgrounds. Sound, as a continuous, multidimensional trait can be particularly challenging to measure because it can be hard to identify variables that can be compared across taxa and it is also no small feat to process and analyse the resulting high-dimensional acoustic data using approaches that are appropriate for subsequent evolutionary analysis. Additionally, terminological inconsistencies and the role of learning in the development of acoustic traits need to be considered. Phylogenetic comparative analyses also have their own sets of caveats to consider. We provide a set of recommendations for delimiting acoustic signals into discrete, comparable acoustic units. We also present a three-stage workflow for extracting relevant acoustic data, including options for multivariate analyses and dimensionality reduction that is compatible with phylogenetic comparative analysis. We then summarize available phylogenetic comparative approaches and how they have been used in comparative bioacoustics, and address the limitations of comparative analyses with behavioural data. Lastly, we recommend how to apply these methods to acoustic data across a range of study systems. In this way, we provide an integrated framework to aid in quantitative analysis of cross-taxa variation in animal sounds for comparative phylogenetic analysis. In addition, we advocate the standardization of acoustic terminology across disciplines and taxa, adoption of automated methods for acoustic feature extraction, and establishment of strong data archival practices for acoustic recordings and data analyses. Combining such practices with our proposed workflow will greatly advance the reproducibility, biological interpretation, and longevity of comparative bioacoustic studies. 相似文献
8.
An increasing number of studies demonstrate that plant and animal phenologies such as the timing of bird migration have been advancing over the globe, likely as a result of climate change. Even closely related species differ in their phenological responses, and the sources of this variation are poorly established. We used a large, standardized dataset of first arrival dates (FAD) of migratory birds to test the effects of phylogenetic relationships and various life-history and ecological traits on the degree to which different species adapt to climate change by earlier migration in spring. Using the phylogenetic comparative method, we found that the advancement of FAD was greater in species with more generalized diet, shorter migration distance, more broods per year, and less extensive prebreeding molt. In turn, we found little evidence that FAD trends were influenced by competition for mating (polygamy or extra-pair paternity) and breeding opportunities (cavity nests). Our findings were robust to several potentially confounding effects. These evolutionary correlations, coupled with the low levels of phylogenetic dependence we found, indicate that avian migration phenology adapts to climate change as a species-specific response. Our results suggest that the degree of this response is fundamentally shaped by constraints and selection pressures of the species' life history, and less so by the intensity of sexual selection. 相似文献
9.
Anna G. Phillips Till Töpfer Carsten Rahbek Katrin Böhning‐Gaese Susanne A. Fritz 《Journal of Biogeography》2018,45(10):2337-2347
10.
11.
A fundamental issue in understanding human diversity is whether or not there are regular patterns and processes involved in cultural change. Theoretical and mathematical models of cultural evolution have been developed and are increasingly being used and assessed in empirical analyses. Here, we test the hypothesis that the rates of change of features of human socio-cultural organization are governed by general rules. One prediction of this hypothesis is that different cultural traits will tend to evolve at similar relative rates in different world regions, despite the unique historical backgrounds of groups inhabiting these regions. We used phylogenetic comparative methods and systematic cross-cultural data to assess how different socio-cultural traits changed in (i) island southeast Asia and the Pacific, and (ii) sub-Saharan Africa. The relative rates of change in these two regions are significantly correlated. Furthermore, cultural traits that are more directly related to external environmental conditions evolve more slowly than traits related to social structures. This is consistent with the idea that a form of purifying selection is acting with greater strength on these more environmentally linked traits. These results suggest that despite contingent historical events and the role of humans as active agents in the historical process, culture does indeed evolve in ways that can be predicted from general principles 相似文献
12.
Structural variation in acoustic signals may be related either to the factors affecting sound production such as bird morphology, or to vocal adaptations to improve sound transmission in different environments. Thus, variation in acoustic signals can influence intraspecific communication processes. This will ultimately influence divergence in allopatric populations. The study of geographical variation in vocalizations of suboscines provides an opportunity to compare acoustic signals from different populations, without additional biases caused by song learning and cultural evolution typical of oscines. The aim of this study was to compare vocalizations of distinct populations of a suboscine species, the Thorn‐tailed Rayadito. Four types of vocalizations were recorded in five populations, including all three currently accepted subspecies. Comparisons of each type of vocalization among the five populations showed that some variation existed in the repetitive trill, whereas no differences were found among alarm calls and loud trills. Variation in repetitive trills among populations and forest types suggests that sound transmission is involved in vocal differences in suboscines. Acoustic differences are also consistent with distinguishing subspecies bullocki from spinicauda and fulva, but not the two latter subspecies from each other. Our results suggest that the geographical differentiation in vocalizations observed among Thorn‐tailed Rayadito populations is likely to be a consequence of different ecological pressures. Therefore, incipient genetic isolation of these populations is suggested, based on the innate origin of suboscine vocalizations. 相似文献
13.
In this study, we sequenced one nuclear and three mitochondrial DNA loci to construct a robust estimate of phylogeny for all available species of Tetanocera. Character optimizations suggested that aquatic habitat was the ancestral condition for Tetanocera larvae, and that there were at least three parallel transitions to terrestrial habitat, with one reversal. Maximum likelihood analyses of character state transformations showed significant correlations between habitat transitions and changes in four larval morphological characteristics (cuticular pigmentation and three characters associated with the posterior spiracular disc). We provide evidence that phylogenetic niche conservatism has been responsible for the maintenance of aquatic-associated larval morphological character states, and that concerted convergence and/or gene linkage was responsible for parallel morphological changes that were derived in conjunction with habitat transitions. These habitat-morphology associations were consistent with the action of natural selection in facilitating the morphological changes that occurred during parallel aquatic to terrestrial habitat transitions in Tetanocera. 相似文献
14.
雀形目10种鸟类线粒体的DNA变异及分子进化 总被引:13,自引:0,他引:13
采用14种限制性内切酶(Apa I、BamHI、Bgl Ⅱ、EcoRI、EcoRV、HindⅢ、HpaI、KpnI、PstI、PuvⅡ、SalI、ScaI、XbaI和XhoI)对雀形目3科10种鸟类(蒙古百灵、喜鹊、小嘴乌雅、白腰朱顶雀、锡嘴雀、朱雀、红腹灰雀、灰腹灰雀、红交嘴雀和黄喉Wu)进行限制性片段长度多态分析(RFLP分析)。结果表明:雀形目鸟类基因组大小存在遗传多态性,不同类群在酶切类型上表现出各自的特点,雀形目鸟类与非雀形目鸟类在线粒体DNA的进化速率有着相同的特点,化石记录的地质年代与线粒体DNA分子时钟记录的年代有着惊人的吻合,这两个互为独立事件的统一,提示线粒体DNA作为分子进化的良好工具。 相似文献
15.
Many species of birds show distinctive seasonal breeding and nonbreeding plumages. A number of hypotheses have been proposed for the evolution of this seasonal dichromatism, specifically related to the idea that birds may experience variable levels of sexual selection relative to natural selection throughout the year. However, these hypotheses have not addressed the selective forces that have shaped molt, the underlying mechanism of plumage change. Here, we examined relationships between life‐history variation, the evolution of a seasonal molt, and seasonal plumage dichromatism in the New World warblers (Aves: Parulidae), a family with a remarkable diversity of plumage, molt, and life‐history strategies. We used phylogenetic comparative methods and path analysis to understand how and why distinctive breeding and nonbreeding plumages evolve in this family. We found that color change alone poorly explains the evolution of patterns of biannual molt evolution in warblers. Instead, molt evolution is better explained by a combination of other life‐history factors, especially migration distance and foraging stratum. We found that the evolution of biannual molt and seasonal dichromatism is decoupled, with a biannual molt appearing earlier on the tree, more dispersed across taxa and body regions, and correlating with separate life‐history factors than seasonal dichromatism. This result helps explain the apparent paradox of birds that molt biannually but show breeding plumages that are identical to the nonbreeding plumage. We find support for a two‐step process for the evolution of distinctive breeding and nonbreeding plumages: That prealternate molt evolves primarily under selection for feather renewal, with seasonal color change sometimes following later. These results reveal how life‐history strategies and a birds' environment act upon multiple and separate feather functions to drive the evolution of feather replacement patterns and bird coloration. 相似文献
16.
A widespread and popular belief posits that humans possess a cognitive capacity that is limited to keeping track of and maintaining stable relationships with approximately 150 people. This influential number, ‘Dunbar''s number’, originates from an extrapolation of a regression line describing the relationship between relative neocortex size and group size in primates. Here, we test if there is statistical support for this idea. Our analyses on complementary datasets using different methods yield wildly different numbers. Bayesian and generalized least-squares phylogenetic methods generate approximations of average group sizes between 69–109 and 16–42, respectively. However, enormous 95% confidence intervals (4–520 and 2–336, respectively) imply that specifying any one number is futile. A cognitive limit on human group size cannot be derived in this manner. 相似文献
17.
Joo Filipe Riva Tonini Diogo B. Provete Natan M. Maciel Alessandro Ribeiro Morais Sandra Goutte Luís Felipe Toledo Robert Alexander Pyron 《Ecology and evolution》2020,10(8):3686-3695
Allometric constraint is a product of natural selection and physical laws, particularly with respect to body size and traits constrained by properties thereof, such as metabolism, longevity, and vocal frequency. Allometric relationships are often conserved across lineages, indicating that physical constraints dictate scaling patterns in deep time, despite substantial genetic and ecological divergence among organisms. In particular, acoustic allometry (sound frequency ~ body size) is conserved across frogs, in defiance of massive variation in both body size and frequency. Here, we ask how many instances of allometric escape have occurred across the frog tree of life using a Bayesian framework that estimates the location, number, and magnitude of shifts in the adaptive landscape of acoustic allometry. Moreover, we test whether ecology in terms of calling site could affect these relationships. We find that calling site has a major influence on acoustic allometry. Despite this, we identify only four major instances of allometric escape, potentially deriving from ecomorphological adaptations to new signal modalities. In these instances of allometric escape, the optima and strength of the scaling relationship are different than expected for most other frog species, representing new adaptive regimes of body size ~ call frequency. Allometric constraints on frog calls are highly conserved and have rarely allowed escape, despite frequent invasions of new adaptive regimes and dramatic ecomorphological divergence. Our results highlight the rare instances in which natural and sexual selection combined can overcome physical constraints on sound production. 相似文献
18.
长江中下游湖泊是越冬水鸟的重要栖息地,随着湖泊渔业养殖强度的不断加大,湖泊湿地严重退化,水鸟的越冬生态受到影响。为揭示长江中下游浅水湖泊越冬水鸟对湿地资源的利用特征,2008年12月至2009年3月,通过扫描取样法采集安徽省长江沿江升金湖、菜子湖和武昌湖3个浅水湖泊30种越冬水鸟的取食行为百分比数据,利用聚类分析法对越冬水鸟进行集团划分,并采用无倾向对应法(DCA)分析越冬水鸟的取食特征。聚类分析结果表明,安庆沿江湖泊越冬水鸟群落可分为4个集团,即深水取食集团G1、挖掘和啄取集团G2、浅水取食集团G3和泥滩拾取集团G4。G2集团的鸟种最多,共有13种,优势种为鸿雁(Anser cygnoides)、豆雁(Anser fabalis);G3集团次之,共6种,优势种为小天鹅(Cygnus columbianus)、白琵鹭(Platalea leucorodia);G4集团共5种,优势种为黑腹滨鹬(Calidris alpina)、鹤鹬(Tringa erythropus)和红脚鹬(Tringa totanus);G1集团水鸟种类有6种。这些水鸟的觅食生境主要在湖泊滩涂和浅水区域,其食物资源的可利用性和觅食对策共同决定群落组成结构。DCA分析表明,取食方式及取食时运动方式组成的觅食对策决定了集团食物资源的分割,草滩中取食鸟类主要采用静止取食和啄取方式,泥滩取食集团主要采取拾取及奔-停取食,深水区取食集团则主要采用潜水方式取食,因此,维持湖泊不同区域的丰富食物资源对于保护湖泊丰富的水鸟资源具有重要意义。 相似文献
19.
Functional coupling, where a single morphological trait performs multiple functions, is a universal feature of organismal design. Theory suggests that functional coupling may constrain the rate of phenotypic evolution, yet empirical tests of this hypothesis are rare. In fish, the evolutionary transition from guarding the eggs on a sandy/rocky substrate (i.e. substrate guarding) to mouthbrooding introduces a novel function to the craniofacial system and offers an ideal opportunity to test the functional coupling hypothesis. Using a combination of geometric morphometrics and a recently developed phylogenetic comparative method, we found that head morphology evolution was 43% faster in substrate guarding species than in mouthbrooding species. Furthermore, for species in which females were solely responsible for mouthbrooding the males had a higher rate of head morphology evolution than in those with bi-parental mouthbrooding. Our results support the hypothesis that adaptations resulting in functional coupling constrain phenotypic evolution. 相似文献
20.
Anne Bruneau 《American journal of botany》1997,84(1):54-71
Erythrina L. (Leguminosae: Phaseoleae) is a pantropical genus of over 100 species, all of which are either hummingbird or passerine pollinated. Phylogenetic hypotheses based on morphological and chloroplast DNA restriction site characters suggest that shifts from passerine to hummingbird pollination have occurred a minimum of four times in the genus. In hummingbird-pollinated species the inflorescences are held upright, the flowers are arranged radially along the axis, and the narrow standard petal is conduplicately folded to form a pseudotube. In most of the passerine-pollinated species, the inflorescences are held horizontally, the flowers are secund, and the standard petal is open so that the nectar and androecium are easily visible and accessible. Nectar amino acid concentrations and sucrose to hexose ratios are closely associated with pollination mode. Despite the general resemblance in flower and inflorescence morphology among species with the same pollination type, homology assessment reveals that petal morphology and size, and calyx and pollen morphology differ. Morphological characters, even if comprising modifications associated with adaptive pollination systems, therefore provide useful phylogenetic information. 相似文献