共查询到20条相似文献,搜索用时 15 毫秒
1.
Five sets of herbivore exclosures situated in mesic and semi‐arid savannas in Hluhluwe‐iMfolozi Park, South Africa were used to investigate the effects of mammal browsers and savanna type on plant traits relating to leaf nutrient content, defense, and growth in seven Acacia species. Mostly, browsing did not significantly affect leaf nutrient content but for a few species (i.e., increasing foliar N and P, decreasing C/N, and total polyphenols). Browser effects on structural defenses tended to be more pronounced than for leaf nutrient content and chemical defenses, particularly for semi‐arid species, resulting in longer, thicker, and denser spines, and a lower bite size index on browsed plants for most semi‐arid species. Browsing had no significant effect on growth rates for all species. Secondly, we investigated the effect of savanna type (mesic vs. semi‐arid) on the same set of plant traits and growth rates. A trade‐off in defense strategy was evident where mesic species had lower quality leaves and invested more heavily in growth and chemical defenses, while semi‐arid species generally had higher nutrient content leaves and invested more in structural defenses and higher levels of ramification. These findings suggest that the previously documented trade‐off in plant growth, resprouting ability and architecture between herbivore versus fire‐adapted savanna woody species can possibly be extended to include browse quality and defense type. 相似文献
2.
Andrea Clavijo McCormick 《Ecology and evolution》2016,6(23):8569-8582
- The attraction of natural enemies towards herbivore‐induced plant volatiles is a well‐documented phenomenon. However, the majority of published studies are carried under optimal water and nutrient regimes and with just one herbivore. But what happens when additional levels of ecological complexity are added? Does the presence of a second herbivore, microorganisms, and abiotic stress interfere with plant–natural enemy communication? or is communication stable enough to withstand disruption by additional biotic and abiotic factors?
- Investigating the effects of these additional levels of ecological complexity is key to understanding the stability of tritrophic interactions in natural ecosystems and may aid to forecast the impact of environmental disturbances on these, especially in climate change scenarios, which are often associated with modifications in plant and arthropod species distribution and increased levels of abiotic stress.
- This review explores the literature on natural enemy attraction to herbivore‐induced volatiles when, besides herbivory, plants are challenged by additional biotic and abiotic factors.
- The aim of this review was to establish the impact of different biotic and abiotic factors on plant–natural enemy communication and to highlight critical aspects to guide future research efforts.
3.
4.
Akane Uesugi Tim Connallon André Kessler Keyne Monro 《Evolution; international journal of organic evolution》2017,71(6):1700-1709
Insect herbivores are important mediators of selection on traits that impact plant defense against herbivory and competitive ability. Although recent experiments demonstrate a central role for herbivory in driving rapid evolution of defense and competition‐mediating traits, whether and how herbivory shapes heritable variation in these traits remains poorly understood. Here, we evaluate the structure and evolutionary stability of the G matrix for plant metabolites that are involved in defense and allelopathy in the tall goldenrod, Solidago altissima. We show that G has evolutionarily diverged between experimentally replicated populations that evolved in the presence versus the absence of ambient herbivory, providing direct evidence for the evolution of G by natural selection. Specifically, evolution in an herbivore‐free habitat altered the orientation of G , revealing a negative genetic covariation between defense‐ and competition‐related metabolites that is typically masked in herbivore‐exposed populations. Our results may be explained by predictions of classical quantitative genetic theory, as well as the theory of acquisition‐allocation trade‐offs. The study provides compelling evidence that herbivory drives the evolution of plant genetic architecture. 相似文献
5.
Stella F. Uiterwaal Ian T. Lagerstrom Thomas M. Luhring Miranda E. Salsbery John P. DeLong 《Ecology and evolution》2020,10(3):1368-1377
The effects of climate change—such as increased temperature variability and novel predators—rarely happen in isolation, but it is unclear how organisms cope with multiple stressors simultaneously. To explore this, we grew replicate Paramecium caudatum populations in either constant or variable temperatures and exposed half to predation. We then fit thermal performance curves (TPCs) of intrinsic growth rate (rmax) for each replicate population (N = 12) across seven temperatures (10°C–38°C). TPCs of P. caudatum exposed to both temperature variability and predation responded only to one or the other (but not both), resulting in unpredictable outcomes. These changes in TPCs were accompanied by changes in cell morphology. Although cell volume was conserved across treatments, cells became narrower in response to temperature variability and rounder in response to predation. Our findings suggest that predation and temperature variability produce conflicting pressures on both thermal performance and cell morphology. Lastly, we found a strong correlation between changes in cell morphology and TPC parameters in response to predation, suggesting that responses to opposing selective pressures could be constrained by trade‐offs. Our results shed new light on how environmental and ecological pressures interact to elicit changes in characteristics at both the individual and population levels. We further suggest that morphological responses to interactive environmental forces may modulate population‐level responses, making prediction of long‐term responses to environmental change challenging. 相似文献
6.
Jamila S. Roth;Todd Z. Osborne;Laura K. Reynolds; 《Oikos》2023,2023(9):e09771
The ecological impacts of multiple stressors are hard to predict but important to understand. When multiple stressors influence foundation species, the effects can cascade throughout the ecosystem. Gulf of Mexico seagrass ecosystems are currently experiencing a suite of novel stressors, including warmer water temperatures and increased herbivory due to tropicalization and conservation efforts. We investigated the impact of warming temperatures and grazing history on plant performance, morphology, and palatability by integrating a mesocosm study using the seagrass Thalassia testudinum with feeding trials using the sea urchin Lytechinus variegatus. Warming temperatures negatively impacted T. testudinum tolerance traits, reducing belowground biomass by 34%, productivity by 74%, shoot density by 10%, and number of leaves per plant by 24%, and negatively impacted resistance traits through 13% lower toughness of young leaves and a trend for reduced leaf carbon:nitrogen. Lytechinus variegatus individuals preferred to consume plants grown under heated conditions, which supports findings of enhanced palatability. Simulated turtle grazing impacted more plant traits than grazing by other herbivores, potentially diminishing plant resilience to future disturbances through reduced rhizome non-structural carbohydrate concentrations and increasing palatability through reduced fiber content and 23% lower leaf carbon:phosphorus. Simulated turtle, simulated parrotfish, and urchin grazing reduced leaf carbon:nitrogen by 11%, also potentially increasing nutritive value. Interactions between warming temperatures and grazers on plant traits were additive for 16 out of 19 response variables. However, the stressors non-additively impacted the number of leaves per plant, fiber content, and epiphyte load. We suggest that the impacts of grazers on leaf turnover rate and leaf age may vary based on water temperature, potentially driving these interactions. Overall, increased temperatures and grazing pressure will likely reduce seagrass resilience, structure, and biomass, potentially impacting feedback systems and producing negative consequences for seagrass cover, associated species, and ecosystem services. 相似文献
7.
8.
Xiao Sun Yumei Sun Xueyao Cao Xincong Zhai Ragan M. Callaway Jinlong Wan S. Luke Flory Wei Huang Jianqing Ding 《Ecology letters》2023,26(9):1584-1596
Non-native plants are typically released from specialist enemies but continue to be attacked by generalists, albeit at lower intensities. This reduced herbivory may lead to less investment in constitutive defences and greater investment in induced defences, potentially reducing defence costs. We compared herbivory on 27 non-native and 59 native species in the field and conducted bioassays and chemical analyses on 12 pairs of non-native and native congeners. Non-natives suffered less damage and had weaker constitutive defences, but stronger induced defences than natives. For non-natives, the strength of constitutive defences was correlated with the intensity of herbivory experienced, whereas induced defences showed the reverse. Investment in induced defences correlated positively with growth, suggesting a novel mechanism for the evolution of increased competitive ability. To our knowledge, these are the first linkages reported among trade-offs in plant defences related to the intensity of herbivory, allocation to constitutive versus induced defences, and growth. 相似文献
9.
虫害诱导植物挥发物(HIPVs)对植食性昆虫的行为调控 总被引:1,自引:2,他引:1
虫害诱导植物挥发物(herbivore induced plant volatiles,HIPVs)具有植物种类、品种、生育期和部位的特异性,也具有植食性昆虫种类、虫龄、为害程度、为害方式和其他一些环境因子的特异性。由于其释放量明显大于健康植株,因此更易被天敌、害虫以及邻近的植物等所利用,从而调节植物、植食性昆虫与天敌三者之间的相互作用关系,增强植物在自然界的生存竞争能力。本文对HIPVs在植食性昆虫寄主定位行为中的作用、HIPVs对植食性昆虫的种群调控功能及其应用现状2个方面加以综述,并在展望中对目前研究中存在的一些问题进行了探讨。 相似文献
10.
Safaa Dalla Susanne Dobler 《Evolution; international journal of organic evolution》2016,70(12):2767-2777
Herbivorous insects and their adaptations against plant toxins provide striking opportunities to investigate the genetic basis of traits involved in coevolutionary interactions. Target site insensitivity to cardenolides has evolved convergently across six orders of insects, involving identical substitutions in the Na,K‐ATPase gene and repeated convergent gene duplications. The large milkweed bug, Oncopeltus fasciatus, has three copies of the Na,K‐ATPase α‐subunit gene that bear differing numbers of amino acid substitutions in the binding pocket for cardenolides. To analyze the effect of these substitutions on cardenolide resistance and to infer possible trade‐offs in gene function, we expressed the cardenolide‐sensitive Na,K‐ATPase of Drosophila melanogaster in vitro and introduced four distinct combinations of substitutions observed in the three gene copies of O. fasciatus. With an increasing number of substitutions, the sensitivity of the Na,K‐ATPase to a standard cardenolide decreased in a stepwise manner. At the same time, the enzyme's overall activity decreased significantly with increasing cardenolide resistance and only the least substituted mimic of the Na,K‐ATPase α1C copy maintained activity similar to the wild‐type enzyme. Our results suggest that the Na,K‐ATPase copies in O. fasciatus have diverged in function, enabling specific adaptations to dietary cardenolides while maintaining the functionality of this critical ion carrier. 相似文献
11.
Plants use volatile organic compounds to attract invertebratepredators and parasitoids of their herbivore pests. Recently,it has been suggested that plants, either through visual orolfactory cues, may also "cry for help" from vertebrate predatorssuch as birds. We show that in a laboratory choice test, passerinebirds (Parus major and Cyanistes caeruleus) were attracted tothe intact branches of trees (Betula pendula) suffering fromfoliar damage caused by herbivore larvae (Epirrita autumnata)in nontest branches. Species, age, or sex of the experimentalbird or lighting (ultraviolet [UV] or non-UV) did not affectthe preference. However, the birds made a clear choice betweenthe treatments when the trees came from a forest patch receivingmore sunlight, whereas no obvious choice was observed when thetrees came from a shadier forest patch. Results of the choicetest were supported by the spectral reflectance of tree leaves.In the sunnier forest patch, control trees reflected more visiblelight than the herbivore trees, whereas no such difference wasfound in the shadier forest patch trees. We suggest that avianpredators use their vision within visible wavelengths to findinsect-rich plants even when they do not see the prey itemsor damaged leaves. 相似文献
12.
Many parasitoid species use olfactory cues to locate their hosts. In tritrophic systems, parasitoids of herbivores can exploit the chemical blends emitted by plants in reaction to herbivore‐induced damage, known as herbivore‐induced plant volatiles (HIPVs). In this study, we explored the specificity and innateness of parasitoid responses to HIPVs using a meta‐analysis of data from the literature. Based on the concept of dietary specialization and infochemical use, we hypothesized that (i) specialist parasitoids (i.e., with narrow host ranges) should be attracted to specific HIPV signals, whereas generalist parasitoids (i.e., with broad host ranges) should be attracted to more generic HIPV signals and (ii) specialist parasitoids should innately respond to HIPVs, whereas generalist parasitoids should have to learn to associate HIPVs with host presence. We characterized the responses of 66 parasitoid species based on published studies of parasitoid behavior. Our meta‐analysis showed that (i) as predicted, specialist parasitoids were attracted to more specific signals than were generalist parasitoids but, (ii) contrary to expectations, response innateness depended on a parasitoid's target host life stage rather than on its degree of host specialization: parasitoids of larvae were more likely to show an innate response to HIPVs than were parasitoids of adults. This result changes our understanding of dietary specialization and highlights the need for further theoretical research that will help clarify infochemical use by parasitoids. 相似文献
13.
A. MUOLA P. MUTIKAINEN L. LAUKKANEN M. LILLEY R. LEIMU 《Journal of evolutionary biology》2010,23(10):2185-2196
Information of the patterns of genetic variation in plant resistance and tolerance against herbivores and genetic trade‐offs between these two defence strategies is central for our understanding of the evolution of plant defence. We found genetic variation in resistance to two specialist herbivores and in tolerance to artificial damage but not to a specialist leaf herbivore in a long‐lived perennial herb. Seedlings tended to have genetic variation in tolerance to artificial damage. Genetic variation in tolerance of adult plants to artificial damage was not consistent in time. Our results suggest that the level of genetic variation in tolerance and resistance depends on plant life‐history stage, type of damage and timing of estimating the tolerance relative to the occurrence of the damage, which might reflect the pattern of selection imposed by herbivory. Furthermore, we found no trade‐offs between resistance and tolerance, which suggests that the two defence strategies can evolve independently. 相似文献
14.
Y. Ohara T. Uchida K. Kakibuchi M. Uefune J. Takabayashi 《Journal of Applied Entomology》2017,141(3):231-234
For the biological control of diamondback moth (DBM) larvae in commercial greenhouses, we have previously identified a blend of volatiles that attracted Cotesia vestalis, a parasitoid of DBM larvae. Here, we tested the effects of an artificial volatile blend on the attractiveness of komatsuna plants (Japanese mustard spinach; Brassica rapa var. perviridis) to C. vestalis under greenhouse conditions. First, we showed that female C. vestalis preferred infested komatsuna plants to uninfested plants in the greenhouse. Under the same conditions, placing the artificial attractants near both infested and uninfested plants did not affect the wasps’ preference. However, when comparing infested komatsuna plants coupled with the artificial attractants with infested plants without them, significantly more female C. vestalis were attracted to the former. The possible use of artificial C. vestalis attractants for the biological control of DBM is discussed. 相似文献
15.
Silicon (Si) is one of the most abundant elements in the earth's crust, although its essentiality in plant growth is not clearly established. However, the importance of Si as an element that is particularly beneficial for plants under a range of abiotic and biotic stresses is now beyond doubt. This paper reviews progress in exploring the benefits at two‐ and three‐trophic levels and the underlying mechanism of Si in enhancing the resistance of host plants to herbivorous insects. Numerous studies have shown an enhanced resistance of plants to insect herbivores including folivores, borers, and phloem and xylem feeders. Silicon may act directly on insect herbivores leading to a reduction in insect performance and plant damage. Various indirect effects may also be caused, for example, by delaying herbivore establishment and thus an increased chance of exposure to natural enemies, adverse weather events or control measures that target exposed insects. A further indirect effect of Si may be to increase tolerance of plants to abiotic stresses, notably water stress, which can in turn lead to a reduction in insect numbers and plant damage. There are two mechanisms by which Si is likely to increase resistance to herbivore feeding. Increased physical resistance (constitutive), based on solid amorphous silica, has long been considered the major mechanism of Si‐mediated defences of plants, although there is recent evidence for induced physical defence. Physical resistance involves reduced digestibility and/or increased hardness and abrasiveness of plant tissues because of silica deposition, mainly as opaline phytoliths, in various tissues, including epidermal silica cells. Further, there is now evidence that soluble Si is involved in induced chemical defences to insect herbivore attack through the enhanced production of defensive enzymes or possibly the enhanced release of plant volatiles. However, only two studies have tested for the effect of Si on an insect herbivore and third trophic level effects on the herbivore's predators and parasitoids. One study showed no effect of Si on natural enemies, but the methods used were not favourable for the detection of semiochemical‐mediated effects. Work recently commenced in Australia is methodologically and conceptually more advanced and an effect of Si on the plants' ability to generate an induced response by acting at the third trophic level was observed. This paper provides the first overview of Si in insect herbivore resistance studies, and highlights novel, recent hypotheses and findings in this area of research. Finally, we make suggestions for future research efforts in the use of Si to enhance plant resistance to insect herbivores. 相似文献
16.
This review focuses on individual effects of major global change factors, such as elevated CO2, Oa, UV light and temperature,on plant secondary chemistry. These secondary metabolites are well-known for their role in plant defense against insect herbivory. Global change effects on secondary chemicals appear to be plant species-specific and dependent on the chemical type. Even though plant chemical responses induced by these factors are highly variable, there seems to be some specificity in the response to different environmental stressors. For example, even though the production of phenolic compounds is enhanced by both elevated CO2 and UV light levels, the latter appears to primarily increase the concentrations of fiavonoids. Likewise, specific phenolic metabolites seem to be induced by O3 but not by other factors, and an increase in volatile organic compounds has been particularly detected under elevated temperature. More information is needed regarding how global change factors influence inducibility of plant chemical defenses as well as how their indirect and direct effects impact insect performance and behavior, herbivory rates and pathogen attack. This knowledge is crucial to better understand how plants and their associated natural enemies will be affected in future changing environments. 相似文献
17.
Genetic variation in expression of defense phenotype may mediate evolutionary adaptation of Asclepias syriaca to elevated CO2 总被引:1,自引:0,他引:1
How species interactions may modify the effects of environmental change on evolutionary adaptation is poorly understood. Elevated CO2 is known to alter plant–herbivore interactions, but the evolutionary consequences for plant populations have received little attention. We conducted an experiment to determine the effects of elevated CO2 and herbivory by a specialist insect herbivore (Danaus plexippus) on the expression of constitutive and induced plant defense traits in five genotypes of Asclepias syriaca, and assessed the heritability of these traits. We also examined changes in relative fitness among plant genotypes in response to altered CO2 and herbivory. The expression of plant defense traits varied significantly among genotypes. Elevated CO2 increased plant growth and physical defenses (toughness and latex), but decreased investment in chemical defenses (cardenolides). We found no effect of elevated CO2 on plant induction of cardenolides in response to caterpillar herbivory. Elevated CO2 decreased the expression of chemical defenses (cardenolides) to a different extent depending on plant genotype. Differential effects of CO2 on plant defense expression, rather than direct effects on relative fitness, may alter A. syriaca adaptation to changing climate. 相似文献
18.
Cong van Doan Marc Pfander Anouk S. Guyer Xi Zhang Corina Maurer Christelle A.M. Robert 《Ecology and evolution》2021,11(9):4182
Climate change will profoundly alter the physiology and ecology of plants, insect herbivores, and their natural enemies, resulting in strong effects on multitrophic interactions. Yet, manipulative studies that investigate the direct combined impacts of changes in CO2, temperature, and precipitation on the third trophic level remain rare. Here, we assessed how exposure to elevated CO2, increased temperature, and decreased precipitation directly affect the performance and predation success of species from four major groups of herbivore natural enemies: an entomopathogenic nematode, a wolf spider, a ladybug, and a parasitoid wasp. A four‐day exposure to future climatic conditions (RCP 8.5), entailing a 28% decrease in precipitation, a 3.4°C raise in temperature, and a 400 ppm increase in CO2 levels, slightly reduced the survival of entomopathogenic nematodes, but had no effect on the survival of other species. Predation success was not negatively affected in any of the tested species, but it was even increased for wolf spiders and entomopathogenic nematodes. Factorial manipulation of climate variables revealed a positive effect of reduced soil moisture on nematode infectivity, but not of increased temperature or elevated CO2. These results suggest that natural enemies of herbivores may be well adapted to short‐term changes in climatic conditions. These findings provide mechanistic insights that will inform future efforts to disentangle the complex interplay of biotic and abiotic factors that drive climate‐dependent changes in multitrophic interaction networks. 相似文献
19.
Monique J. Rivera Kirsten S. Pelz‐Stelinski Xavier Martini Lukasz L. Stelinski 《Ecology and evolution》2017,7(13):4844-4854
Plants can defend themselves against herbivores through activation of defensive pathways and attraction of third‐trophic‐level predators and parasites. Trophic cascades that mediate interactions in the phytobiome are part of a larger dynamic including the pathogens of the plant itself, which are known to greatly influence plant defenses. As such, we investigated the impact of a phloem‐limited bacterial pathogen, Candidatus Liberibacter asiaticus (CLas), in cultivated citrus rootstock on a well‐studied belowground tritrophic interaction involving the attraction of an entomopathogenic nematode (EPN), Steinernema diaprepesi, to their root‐feeding insect hosts, Diaprepes abbreviatus larvae. Using belowground olfactometers, we show how CLas infection interferes with this belowground interaction by similarly inducing the release of a C12 terpene, pregeijerene, and disconnecting the association of the terpene with insect presence. D. abbreviatus larvae that were not feeding but in the presence of a CLas‐infected plant were more likely to be infected by EPN than those near uninfected plants. Furthermore, nonfeeding larvae associated with CLas‐infected plants were just as likely to be infected by EPN as those near noninfected plants with D. abbreviatus larval damage. Larvae of two weevil species, D. abbreviatus and Pachnaeus litus, were also more attracted to plants with infection than to uninfected plants. D. abbreviatus larvae were most active when exposed to pregeijerene at a concentration of 0.1 μg/μl. We attribute this attraction to CLas‐infected plants to the same signal previously thought to be a herbivore‐induced plant volatile specifically induced by root‐feeding insects, pregeijerene, by assessing volatiles collected from the roots of infected plants and uninfected plants with and without feeding D. abbreviatus. Synthesis. Phytopathogens can influence the structuring of soil communities extending to the third trophic level. Field populations of EPN may be less effective at host‐finding using pregeijerene as a cue in citrus grove agroecosystems with high presence of CLas infection. 相似文献
20.
Despite centuries of interest in species range limits, few studies have taken a whole community into consideration. Actually, multiple species may simultaneously respond to environmental changes, for example, global warming, leading a series of dynamical communities toward the advancing front. We investigated multiple species range expansions through the analysis of a two‐species dispersion model and simulations of multiple species assemblages regulated by neutral and fecundity–survival trade‐offs (FSTs), respectively, and found that species assemblages regulated by different mechanisms would initiate different expanding patterns in geographic ranges in response to environmental changes. The neutral model generally predicts a higher biodiversity near the core of an expanding range, and a lower community similarity compared with a FST model. Without considering the evolution of life history traits, an assortment of the reproduction ability happens at the advancing front under FSTs at the expense of a higher death rate or lower competitive ability. These results emphasize the importance of community assembly rules to the biodiversity maintenance of range expanding communities. 相似文献