首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pest species infesting spruce cones were identified from 109 locations approved for the collection of seed material in the Czech Republic. Four (occasionally five) cones were studied from each location, and 448 cones were examined in total. Each cone was assessed for external damage and was then cut open along the spine. The predominant pest species, Cydia strobilella, was detected in 65% of the cones, while the next most common species, Dioryctria abietella, was detected in 13% of the cones. Ernobius abietis, Eupithecia sp., and Thekopsora areolata were less numerous. Kaltenbachiola strobi and Megastigmus sp. were recorded sporadically. Most cones (68%) were infested with only one species. The maximum number of C. strobilella larvae detected in one cone was 13. Cone damage resulting from C. strobilella declined markedly with increasing elevation. Thus, cone infestation by C. strobilella was greater in those forest vegetation zones located in lowlands and uplands rather than in highlands and at lower mountain elevations. The number of cones without damage tended to increase with elevation, but infestation by D. abietella was unrelated to elevation. In some cases, C. strobilella damage to cones was severe. External markings on the cone (resin and deformation) cannot by themselves serve as reliable criteria for predicting C. strobilella infestation, although cones with such signs should be preferentially assessed when seed material is inspected.  相似文献   

2.
The taxonomically diverse phyllosphere fungi inhabit leaves of plants. Thus, apart from the fungi's dispersal capacities and environmental factors, the assembly of the phyllosphere community associated with a given host plant depends on factors encoded by the host's genome. The host genetic factors and their influence on the assembly of phyllosphere communities under natural conditions are poorly understood, especially in trees. Recent work indicates that Norway spruce (Picea abies) vegetative buds harbour active fungal communities, but these are hitherto largely uncharacterized. This study combines internal transcribed spacer sequencing of the fungal communities associated with dormant vegetative buds with a genome‐wide association study (GWAS) in 478 unrelated Norway spruce trees. The aim was to detect host loci associated with variation in the fungal communities across the population, and to identify loci correlating with the presence of specific, latent, pathogens. The fungal communities were dominated by known Norway spruce phyllosphere endophytes and pathogens. We identified six quantitative trait loci (QTLs) associated with the relative abundance of the dominating taxa (i.e., top 1% most abundant taxa). Three additional QTLs associated with colonization by the spruce needle cast pathogen Lirula macrospora or the cherry spruce rust (Thekopsora areolata) in asymptomatic tissues were detected. The identification of the nine QTLs shows that the genetic variation in Norway spruce influences the fungal community in dormant buds and that mechanisms underlying the assembly of the communities and the colonization of latent pathogens in trees may be uncovered by combining molecular identification of fungi with GWAS.  相似文献   

3.
4.
Photosystem II (PSII) complexes are organized into large supercomplexes with variable amounts of light‐harvesting proteins (Lhcb). A typical PSII supercomplex in plants is formed by four trimers of Lhcb proteins (LHCII trimers), which are bound to the PSII core dimer via monomeric antenna proteins. However, the architecture of PSII supercomplexes in Norway spruce[Picea abies (L.) Karst.] is different, most likely due to a lack of two Lhcb proteins, Lhcb6 and Lhcb3. Interestingly, the spruce PSII supercomplex shares similar structural features with its counterpart in the green alga Chlamydomonas reinhardtii [Kou?il et al. (2016) New Phytol. 210 , 808–814]. Here we present a single‐particle electron microscopy study of isolated PSII supercomplexes from Norway spruce that revealed binding of a variable amount of LHCII trimers to the PSII core dimer at positions that have never been observed in any other plant species so far. The largest spruce PSII supercomplex, which was found to bind eight LHCII trimers, is even larger than the current largest known PSII supercomplex from C. reinhardtii. We have also shown that the spruce PSII supercomplexes can form various types of PSII megacomplexes, which were also identified in intact grana membranes. Some of these large PSII supercomplexes and megacomplexes were identified also in Pinus sylvestris, another representative of the Pinaceae family. The structural variability and complexity of LHCII organization in Pinaceae seems to be related to the absence of Lhcb6 and Lhcb3 in this family, and may be beneficial for the optimization of light‐harvesting under varying environmental conditions.  相似文献   

5.
Budburst is regulated by temperature conditions, and a warming climate is associated with earlier budburst. A range of phenology models has been developed to assess climate change effects, and they tend to produce different results. This is mainly caused by different model representations of tree physiology processes, selection of observational data for model parameterization, and selection of climate model data to generate future projections. In this study, we applied (i) Bayesian inference to estimate model parameter values to address uncertainties associated with selection of observational data, (ii) selection of climate model data representative of a larger dataset, and (iii) ensembles modeling over multiple initial conditions, model classes, model parameterizations, and boundary conditions to generate future projections and uncertainty estimates. The ensemble projection indicated that the budburst of Norway spruce in northern Europe will on average take place 10.2 ± 3.7 days earlier in 2051–2080 than in 1971–2000, given climate conditions corresponding to RCP 8.5. Three provenances were assessed separately (one early and two late), and the projections indicated that the relationship among provenance will remain also in a warmer climate. Structurally complex models were more likely to fail predicting budburst for some combinations of site and year than simple models. However, they contributed to the overall picture of current understanding of climate impacts on tree phenology by capturing additional aspects of temperature response, for example, chilling. Model parameterizations based on single sites were more likely to result in model failure than parameterizations based on multiple sites, highlighting that the model parameterization is sensitive to initial conditions and may not perform well under other climate conditions, whether the change is due to a shift in space or over time. By addressing a range of uncertainties, this study showed that ensemble modeling provides a more robust impact assessment than would a single phenology model run.  相似文献   

6.
Improving our understanding of the potential of forest adaptation is an urgent task in the light of predicted climate change. Long‐term alternatives for susceptible yet economically important tree species such as Norway spruce (Picea abies) are required, if the frequency and intensity of summer droughts will continue to increase. Although Silver fir (Abies alba) and Douglas fir (Pseudotsuga menziesii) have both been described as drought‐tolerant species, our understanding of their growth responses to drought extremes is still limited. Here, we use a dendroecological approach to assess the resistance, resilience, and recovery of these important central Europe to conifer species the exceptional droughts in 1976 and 2003. A total of 270 trees per species were sampled in 18 managed mixed‐species stands along an altitudinal gradient (400–1200 m a.s.l.) at the western slopes of the southern and central Black Forest in southwest Germany. While radial growth in all species responded similarly to the 1976 drought, Norway spruce was least resistant and resilient to the 2003 summer drought. Silver fir showed the overall highest resistance to drought, similarly to Douglas fir, which exhibited the widest growth rings. Silver fir trees from lower elevations were more drought prone than trees at higher elevations. Douglas fir and Norway spruce, however, revealed lower drought resilience at higher altitudes. Although the 1976 and 2003 drought extremes were quite different, Douglas fir maintained consistently the highest radial growth. Although our study did not examine population‐level responses, it clearly indicates that Silver fir and Douglas fir are generally more resistant and resilient to previous drought extremes and are therefore suitable alternatives to Norway spruce; Silver fir more so at higher altitudes. Cultivating these species instead of Norway spruce will contribute to maintaining a high level of productivity across many Central European mountain forests under future climate change.  相似文献   

7.
Abstract

The presence of a trade–off between growth and reproduction was tested in four sites in a subalpine Norway spruce (Picea abies (L.) Karst.) forest by measuring annual stem diameter increments at breast height and seed and cone productions during the periods 1962–1985 and 1983–1990, respectively. Trees growing in forest stands near the timber line (about 1900 m above sea level) had the greatest reduction in annual stem diameter increment during mast years; while trees growing at about 1300–1500 m above sea level did not show any reduction. Trees growing at about 1700 m showed only a limited reduction. At the same elevation, trees growing within closed forest stands suffered a greater reduction in stem growth when compared with trees growing at the edge of a cutting.  相似文献   

8.
Budburst models have mainly been developed to capture the processes of individual trees, and vary in their complexity and plant physiological realism. We evaluated how well eleven models capture the variation in budburst of birch and Norway spruce in Germany, Austria, the United Kingdom and Finland. The comparison was based on the models performance in relation to their underlying physiological assumptions with four different calibration schemes. The models were not able to accurately simulate the timing of budburst. In general the models overestimated the temperature effect, thereby the timing of budburst was simulated too early in the United Kingdom and too late in Finland. Among the better performing models were three models based on the growing degree day concept, with or without day length or chilling, and an empirical model based on spring temperatures. These models were also the models least influenced by the calibration data. For birch the best calibration scheme was based on multiple sites in either Germany or Europe, and for Norway spruce the best scheme included multiple sites in Germany or cold years of all sites. Most model and calibration combinations indicated greater bias with higher spring temperatures, mostly simulating earlier than observed budburst.  相似文献   

9.
10.
11.
12.
Determining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large‐scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring‐based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750–2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long‐term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand's estimated time since last major disturbance, increased with mean diameter, and declined with increasing within‐stand structural variability. Reconstructed spatial patterns suggest that high small‐scale structural variability has historically acted to reduce large‐scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region‐wide increase in disturbance susceptibility. Increasingly common high‐severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events).  相似文献   

13.
The spruce budworm, Choristoneura fumiferana, is presumed to be panmictic across vast regions of North America. We examined the extent of panmixia by genotyping 3,650 single nucleotide polymorphism (SNP) loci in 1975 individuals from 128 collections across the continent. We found three spatially structured subpopulations: Western (Alaska, Yukon), Central (southeastern Yukon to the Manitoba–Ontario border), and Eastern (Manitoba–Ontario border to the Atlantic). Additionally, the most diagnostic genetic differentiation between the Central and Eastern subpopulations was chromosomally restricted to a single block of SNPs that may constitute an island of differentiation within the species. Geographic differentiation in the spruce budworm parallels that of its principal larval host, white spruce (Picea glauca), providing evidence that spruce budworm and spruce trees survived in the Beringian refugium through the Last Glacial Maximum and that at least two isolated spruce budworm populations diverged with spruce/fir south of the ice sheets. Gene flow in the spruce budworm may also be affected by mountains in western North America, habitat isolation in West Virginia, regional adaptations, factors related to dispersal, and proximity of other species in the spruce budworm species complex. The central and eastern geographic regions contain individuals that assign to Eastern and Central subpopulations, respectively, indicating that these barriers are not complete. Our discovery of previously undetected geographic and genomic structure in the spruce budworm suggests that further population modelling of this ecologically important insect should consider regional differentiation, potentially co‐adapted blocks of genes, and gene flow between subpopulations.  相似文献   

14.
15.
To test for the effects of far‐red light on preventing budset in Picea abies , seedlings of six populations originating from latitudes between 67°N and 47°N were grown for 4–8 weeks in continuous incandescent (metal halogen) light at 300 µmol m−2 s−1 and 20°C and then transferred, at the same temperature, to a daily regime of 8 h incandescent light (300 µmol m−2 s−1) followed by 16 h cool white fluorescent light (40 µmol m−2 s−1). (Cool white lamps are deficient in far‐red light, with a R/FR ratio of 7.5 compared with 2.0 for the incandescent lamps.) All the seedlings from 67° and 80% of those from 64° stopped extension growth and set terminal buds within 28 days of the change of regime. The seedlings from 61° and further south continued growing, as did control seedlings from 67° grown as above but with incandescent light at 20 µmol m−2 s−1 replacing cool white illumination. To distinguish between a clinal and ecotypic pattern of variation, the interval between 64° and 59° was investigated by growing populations originating from that area in the same regimes as before. After 28 days in the cool white day‐extension regime, the percentage budset was 86 for the population from 64°, 0 for the population from 59° and 25–50 for the intermediate populations; i.e. the populations showed a clinal variation in requirement for far‐red light according to latitude. Thus northern populations of Picea abies appear to behave as 'light‐dominant' plants for the photoperiodic control of extension growth and budset, whereas the more southern populations behave as 'dark‐dominant' plants.  相似文献   

16.
17.
Tree growth at northern treelines is generally temperature‐limited due to cold and short growing seasons. However, temperature‐induced drought stress was repeatedly reported for certain regions of the boreal forest in northwestern North America, provoked by a significant increase in temperature and possibly reinforced by a regime shift of the pacific decadal oscillation (PDO). The aim of this study is to better understand physiological growth reactions of white spruce, a dominant species of the North American boreal forest, to PDO regime shifts using quantitative wood anatomy and traditional tree‐ring width (TRW) analysis. We investigated white spruce growth at latitudinal treeline across a >1,000 km gradient in northwestern North America. Functionally important xylem anatomical traits (lumen area, cell‐wall thickness, cell number) and TRW were correlated with the drought‐sensitive standardized precipitation–evapotranspiration index of the growing season. Correlations were computed separately for complete phases of the PDO in the 20th century, representing alternating warm/dry (1925–1946), cool/wet (1947–1976) and again warm/dry (1977–1998) climate regimes. Xylem anatomical traits revealed water‐limiting conditions in both warm/dry PDO regimes, while no or spatially contrasting associations were found for the cool/wet regime, indicating a moisture‐driven shift in growth‐limiting factors between PDO periods. TRW reflected only the last shift of 1976/1977, suggesting different climate thresholds and a higher sensitivity to moisture availability of xylem anatomical traits compared to TRW. This high sensitivity of xylem anatomical traits permits to identify first signs of moisture‐driven growth in treeline white spruce at an early stage, suggesting quantitative wood anatomy being a powerful tool to study climate change effects in the northwestern North American treeline ecotone. Projected temperature increase might challenge growth performance of white spruce as a key component of the North American boreal forest biome in the future, when drier conditions are likely to occur with higher frequency and intensity.  相似文献   

18.
Understanding the mating system and reproductive success of a species provides evidence for sexual selection. We examined the mating system and the reproductive success of captive adult black sea bream (Acanthopagrus schlegelii), using parentage assignment based on two microsatellites multiplex PCR systems, with 91.5% accuracy in a mixed family (29 sires, 25 dams, and 200 offspring). Based on the parentage result, we found that 93.1% of males and 100% of females participated in reproduction. A total of 79% of males and 92% of females mated with multiple partners (only 1 sire and 1 dam were monogamous), indicating that polygynandry best described the genetic mating system of black sea bream. For males, maximizing the reproductive success by multiple mating was accorded with the sexual selection theory while the material benefits hypothesis may contribute to explain the multiple mating for females. For both sexes, there was a significant correlation between mating success and reproductive success and the variance in reproductive success of males was higher than females. Variation in mating success is the greatest determinant to variation in reproductive success when the relationship is strongly positive. The opportunity for sexual selection of males was twice that of females, as well as the higher slope of the Bateman curve in males suggested that the intensity of intrasexual selection of males was higher than females. Thus, male–male competition would lead to the greater variation of mating success for males, which caused greater variation in reproductive success in males. The effective population number of breeders (Nb) was 33, and the Nb/N ratio was 0.61, slightly higher than the general ratio in polygynandrous fish populations which possibly because most individuals mated and had offspring with a low variance. The relatively high Nb contributes to the maintenance of genetic diversity in farmed black sea bream populations.  相似文献   

19.
The contemporary explanation for the rapid evolutionary diversification of animal genitalia is that such traits evolve by post‐copulatory sexual selection. Here, we test the hypothesis that the male genital spines of Drosophila ananassae play an adaptive role in post‐copulatory sexual selection. Whereas previous work on two Drosophila species shows that these spines function in precopulatory sexual selection to initiate genital coupling and promote male competitive copulation success, further research is needed to evaluate the potential for Drosophila genital spines to have a post‐copulatory function. Using a precision micron‐scale laser surgery technique, we test the effect of spine length reduction on copulation duration, male competitive fertilization success, female fecundity and female remating behaviour. We find no evidence that male genital spines in this species have a post‐copulatory adaptive function. Instead, females mated to males with surgically reduced/blunted genital spines exhibited comparatively greater short‐term fecundity relative to those mated by control males, indicating that the natural (i.e. unaltered) form of the trait may be harmful to females. In the absence of an effect of genital spine reduction on measured components of post‐copulatory fitness, the harm seems to be a pleiotropic side effect rather than adaptive. Results are discussed in the context of sexual conflict mediating the evolution of male genital spines in this species and likely other Drosophila.  相似文献   

20.
Knowledge of the biology of rare plant species is indispensable to aid their survival and to inform efficient conservation actions, but in many cases relevant data are lacking. In addition, while studies of conservation genetics have provided a wealth of information on the considerations arising from inbreeding, mate limitation, or local adaptation, the impact of intraspecific polyploidy remains understudied. In this study, we examined the breeding system of the rare Australian daisy Rutidosis lanata (Asteraceae) and screened ten of its populations for their ploidy level to develop recommendations for management actions, in particular, with regard to seed sourcing and genetic rescue. We found R. lanata to represent a polyploid complex, with tetraploid, pentaploid and hexaploid individuals coexisting in the same species. Crossing experiments confirmed R. lanata to be self‐incompatible. Mate availability varied from c. 49% to c. 76% across populations. Most populations showed mate availability of c. 50%–70%, suggesting that mate limitation resulting from a lack of local genetic diversity may cause or at least contribute to reduced seed set. Crossing between populations resulted in significantly higher reproductive success for all populations except one, suggesting the possibility of genetic rescue through population mixing. However, the crossing experiments also showed that pentaploids suffer from a severely reduced paternal reproductive fitness. Any additional hybrids between tetraploids and pentaploids, as would be created by mixing populations with different genome copy numbers during conservation work, would consequently exacerbate mate limitation and thus reduce population viability. We conclude that seed set and thus population viability can be maximized by mixing populations with the same number of genome copies, but that populations with different numbers should be kept spatially separated. The case of Rutidosis lanata provides an example and a potential template for examining the conservation genetics of other species that may constitute polyploid complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号