首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the interaction of diclofenac sodium (Dic.Na) with bovine serum albumin (BSA) in the absence and presence of urea using different spectroscopic techniques. A fluorescence quenching study revealed that the Stern–Volmer quenching constant decreases in the presence of urea, decreasing further at higher urea concentrations. The binding constant and number of binding sites were also evaluated for the BSA–Dic.Na interaction system in the absence and presence of urea using a modified Stern–Volmer equation. The binding constant is greater at high urea concentrations, as shown by the fluorescence results. In addition, for the BSA–Dic.Na interaction system, a static quenching mechanism was observed, which was further confirmed using time‐resolved fluorescence spectroscopy. UV–vis spectroscopy provided information about the formation of a complex between BSA and Dic.Na. Circular dichroism was carried out to explain the conformational changes in BSA induced by Dic.Na in the absence and presence of urea. The presence of urea reduced the α‐helical content of BSA as the Dic.Na concentration varied. The distance r between the donor (BSA) and acceptor (Dic.Na) was also obtained in the absence and presence of urea, using fluorescence resonance energy transfer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, the interaction between orientin and bovine serum albumin (BSA) was examined using fluorescence and absorbance spectroscopy. The analysis of the quenching mechanism was done using Stern–Volmer plots which exhibit upward (positive) deviation. A linear response to orientin was shown in the concentration range between 3 and 50 μM. The experimental results showed the presence of a static quenching process between orientin and BSA. The thermodynamic parameters ΔH, ΔS and ΔG were also calculated and suggested that the hydrophobic and electrostatic interactions played an important role in the interaction between orientin and BSA. Furthermore, the distances between BSA and orientin were determined according to Förster non‐radiation energy transfer theory. In addition, the results of the synchronous fluorescence obtained indicated that the binding of orientin with BSA could affect conformation in BSA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The fluorescence quenching spectrum of bovine serum albumin (BSA) was investigated in the presence of felodipine (FLD) by spectroscopic methods including fluorescence spectroscopy and UV–Vis absorption spectroscopy. Stern–Volmer quenching was successfully applied and the corresponding thermodynamic parameters, namely enthalpy change (ΔH), free energy change (ΔG) and entropy change (ΔS) at different temperatures (304, 314 and 324 K) were calculated according to the Van't Hoff relation. This revealed that the hydrophobic interaction plays a major role in stabilizing the complex. The fluorescence spectrum of BSA was studied in presence of various concentrations of SDS surfactant. The distance (r) between donor (BSA) and acceptor (FLD) was obtained according to fluorescence resonance energy transfer (FRET). The synchronous fluorescence spectroscopy was used to investigate the effect of FLD on BSA molecule. The result shows that the conformation of BSA was changed in the presence of felodipine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
We present here a systematic investigation on the interaction between a water‐soluble alloyed semiconductor quantum dot and bovine serum albumin using various spectroscopic techniques i.e. fluorescence quenching, resonance light scattering and synchronous fluorescence spectroscopy. The analysis of fluorescence spectrum and fluorescence intensity indicates that the intrinsic fluorescence of bovine serum albumin (BSA) gets quenched by both static and dynamic quenching mechanism. The Stern‐Volmer quenching constants, energy transfer efficiency parameters, binding parameters and corresponding thermodynamic parameters (ΔH0, ΔS0 and ΔG0) have been evaluated by using van 't Hoff equation at different temperatures. A positive entropy change with a positive enthalpy change was observed suggesting that the binding process was an entropy‐driven, endothermic process associated with the hydrophobic effect. The intermolecular distance (r) between donor (BSA) and acceptor (CdSeS/ZnS quantum dots) was estimated according to Förster's theory of non‐radiative energy transfer. The synchronous fluorescence spectra revealed a blue shift in the emission maxima of tryptophan which is indicative of increasing hydrophobicity. Negative ΔG0 values implied that the binding process was spontaneous. It was found that hydrophobic forces played a role in the quenching process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
6.
The interaction between thiamine hydrochloride (TA) and bovine serum albumin (BSA) was investigated by fluorescence, FTIR, UV–vis spectroscopic and cyclic voltammetric techniques under optimised physiological condition. The fluorescence intensity of BSA is gradually decreased upon addition of TA due to the formation of a BSA–TA complex. The binding parameters were evaluated and their behaviour at different temperatures was analysed. The quenching constants (Ksv) obtained were 2.6 × 104, 2.2 × 104 and 2.0 × 104 L mol?1 at 288, 298 and 308 K, respectively. The binding mechanism was static-type quenching. The values of ΔH° and ΔS° were found to be 26.87 kJ mol?1 and 21.3 J K?1 mol?1, and indicated that electrostatic interaction was the principal intermolecular force. The changes in the secondary structure of BSA upon interaction with TA were confirmed by synchronous and 3-D spectral results. Site probe studies reveal that TA is located in site I of BSA. The effects of some common metal ions on binding of BSA–TA complex were also investigated.  相似文献   

7.
This study explored interactions between m‐phenylenediamine (MPD) and bovine serum albumin (BSA) by spectrophotometry. The Stern‐Volmer equation and UV‐vis spectra examination at different temperatures and pH were used to explore different quenching mechanisms. Under simulated physiological conditions, the binding distance between MPD and BSA was 5.18 nm with a ratio of 1:1. The quenching effect of MPD on BSA intrinsic fluorescence depended strongly on pH, and maximum quenching was observed at alkaline pH. Moreover, the thermodynamic parameters of the MPD‐BSA system showed that the predominant acting force between MPD and BSA was a hydrophobic force. The impact of MPD on the conformation of BSA and the effects of co‐ions on binding interactions were also examined. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The interaction of lycopene with bovine serum albumin (BSA) in aqueous solution was studied by fluorescence quenching, three‐dimensional fluorescence and circular dichroism spectroscopy. The data showed that the fluorescence of BSA was quenched by lycopene at different temperatures through a dynamic mechanism. The evaluation of three‐dimensional fluorescence spectra revealed a conformational modification of BSA induced by coupling with lycopene and an increase in protein diameter as a consequence of the ligand–protein interaction. Moreover, the information obtained from evaluation of the effect of lycopene on BSA conformation by circular dichroism strongly supported the existence of a slight unfolding of BSA induced by coupling to lycopene. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Interaction of 3‐styrylindoles 1–8 viz. 3‐(2‐phenylethenyl‐E)‐NH‐indole (1), 3‐[2‐(4‐nitrophenyl)ethenyl‐E]‐NH‐indole (2), 5‐bromo‐3‐[2‐(4‐nitrophenyl)ethenyl‐E]‐NH‐indole (3), 5‐methoxy‐3‐[2‐(4‐nitrophenyl)ethenyl‐E]‐NH‐indole (4), 3‐[2‐(4‐cyanophenyl)ethenyl‐E]‐NH‐indole (5), 3‐[2‐(4‐cyanophenyl)ethenyl‐E]‐N‐ethylindole (6), 5‐bromo‐3‐[2‐(4‐chlorophenyl)ethenyl‐E]‐NH‐indole (7) and 5‐methoxy‐3‐[2‐(4‐chlorophenyl)ethenyl‐E]‐NH‐indole (8) with bovine serum albumin (BSA) was examined by UV–vis and steady‐state fluorescence spectroscopy. The fluorescence intensity of 1–8 increases with the increasing BSA concentration. Upon binding with BSA, while 1 and 5–8 show a blue shift in their λf max, 2–4 do not exhibit such behavior. Compounds 1–8 also quench the 345 nm fluorescence of BSA in phosphate buffer (λex, 280 nm). These compounds intercalate in the hydrophobic regions of BSA, as evidenced by the determination of BSA binding site micropolarity using compounds 2–8. As evidenced by the estimation of energy transfer efficiency and distance between the donor (BSA‐Trp‐212) and the acceptor (3‐styrylindoles), the halo‐substituted compounds 3 and 7 interact with BSA more effectively than the other 3‐strylindoles. These compounds have potential for use as neutral and hydrophobic fluorescence probes for examining the microenvironments in proteins, polymers, micelles, etc. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Under simulated physiological conditions, the reaction mechanism between cefixime and bovine serum albumin at different temperatures (293, 303 and 310 K) was investigated using a fluorescence quenching method and synchronous fluorescence method, respectively. The results indicated that the fluorescence intensity and synchronous fluorescence intensity of bovine serum albumin decreased regularly on the addition of cefixime. In addition, the quenching mechanism, binding constants, number of binding sites, type of interaction force and energy‐transfer parameters of cefixime with bovine serum albumin obtained from two methods using the same equation were consistent. The results indicated that the synchronous fluorescence spectrometry could be used to study the binding mechanism between drug and protein, and was a useful supplement to the conventional method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A fluorescence quenching technique is often used to study interactions between small molecules and serum albumin. However, the results are quite different by using spectroscopic techniques on the same drug‐protein interaction research and they may be affected by different conditions (e.g. working solution of pH and ionic strength). In this research, using apigenin as an example, the effect of experimental conditions of fluorescence quenching on the binding parameters of drug to bovine serum albumin was investigated using a response surface method (RSM). The effect of pH, the concentration of NaCl and the concentration Mg2+ on the quenching constant (KSV), the apparent association constant (Ka) and the number of binding sites (n) was studied by single‐factor experiments with pH, [NaCl] and [Mg2+] as independent variables and KSV, Ka and n as response values. Prediction models were fit to a quadratic polynomial regression equation and the results showed that both KSV and n displayed a second‐order model, whereas Ka displayed linear relation dependence on pH, [NaCl] and [Mg2+]. Under these experimental conditions, [NaCl] was the most significant (p < 0.05) impact factor on KSV and Ka, whereas n was most affected by pH (p < 0.05). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The interaction between fasudil hydrochloride (FSD) and bovine serum albumin (BSA) was investigated using fluorescence and ultraviolet spectroscopy under imitated physiological conditions. The Stern–Volmer quenching model has been successfully applied and the results revealed that FSD could quench the intrinsic fluorescence of BSA effectively via static quenching. The binding constants and binding sites for the BSA–FSD system were evaluated. The corresponding thermodynamic parameters obtained at different temperatures indicated that hydrophobic force played a major role in the interaction of FSD and BSA. The distance between the donor (BSA) and the acceptor (FSD) was obtained according to fluorescence resonance energy transfer (FRET). Synchronous fluorescence spectroscopy and FT‐IR spectra showed that the conformation of BSA was changed in the presence of FSD. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Physical binding‐mediated organic dye direct‐labelling of proteins could be a promising technology for bio‐nanomedical applications. Upon binding, it was found that fluorescence resonance energy transfer (FRET) occurred between donor bovine serum albumin (BSA; an amphiphilic protein) and acceptor fluoresceinamine (FA; a hydrophobic fluorophore), which could explain fluorescence quenching found for BSA. FRET efficiency and the distance between FA and BSA tryptophan residues were determined to 17% and 2.29 nm, respectively. Using a spectroscopic superimposition method, the saturated number of FAs that bound to BSA was determined as eight to give a complex formula of FA8–BSA. Finally, molecular docking between BSA and FA was conducted, and conformational change that occurred in BSA upon binding to FA molecules was also studied by three‐dimensional fluorescence microscopy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Chalcones possess various biological properties, for example, antimicrobial, anti‐inflammatory, analgesic, antimalarial, anticancer, antiprotozoal and antitubercular activity. In this study, naphthylchalcone derivatives were synthesized and characterized using 1H NMR 13C NMR, Fourier transform infrared and mass techniques. Yields for all derivatives were found to be >90%. Protein–drug interactions influence the absorption, distribution, metabolism and excretion (ADME) properties of a drug. Therefore, to establish whether the synthesized naphthylchalcone derivatives can be used as drugs, their binding interaction toward a serum protein (bovine serum albumin) was investigated using fluorescence, circular dichroism and molecular docking techniques under physiological conditions. Fluorescence quenching of the protein in the presence of naphthylchalcone derivatives, and other derived parameters such as association constants, number of binding sites and static quenching involving confirmed non‐covalent binding interactions in the protein–ligand complex were observed. Circular dichroism clearly showed changes in the secondary structure of the protein in the presence of naphthylchalcones, indicating binding between the derivatives and the serum protein. Molecular modelling further confirmed the binding mode of naphthylchalcone derivatives in bovine serum albumin. A site‐specific molecular docking study of naphthylchalcone derivatives with serum albumin showed that binding took place primarily in the aromatic low helix and then in subdomain II. The dominance of hydrophobic, hydrophilic and hydrogen bonding was clearly visible and was responsible for stabilization of the complex.  相似文献   

15.
The binding of bovine serum albumin (BSA) to ethambutol (EMB) was investigated using spectroscopic methods, viz., fluorescence, Fourier transform infrared (FTIR), ultraviolet (UV)/vis absorption and cyclic voltammetry techniques. Spectroscopic analysis of the emission quenching at different temperatures revealed that the quenching mechanism of serum albumin by EMB is static, which was also confirmed by lifetime measurements. The number of binding sites, n, and binding constant, K, were obtained at various temperatures. The distance, r, between EMB and the protein was evaluated according to the Förster energy transfer theory. Based on displacement experiments using site probes, viz., warfarin, ibuprofen and digitoxin, the site of binding of EMB in BSA was proposed to be Sudlow's site I. The effect of EMB on the conformation of BSA was analyzed by using synchronous fluorescence spectra (SFS) and 3D fluorescence spectra. The results of fluorescence, UV/vis absorption and FTIR spectra showed that the conformation of BSA was changed in the presence of EMB. The thermodynamic parameters including enthalpy change (ΔH0), entropy change (ΔS0) and free energy change (ΔG0) for BSA–EMB were calculated according to the van't Hoff equation and are discussed.  相似文献   

16.
Binding of isofraxidin to bovine serum albumin   总被引:4,自引:0,他引:4  
Liu J  Tian J  Hu Z  Chen X 《Biopolymers》2004,73(4):443-450
The binding of isofraxidin to bovine serum albumin (BSA) was studied under physiological conditions with BSA concentration of 1.5 x 10(-6) mol x L(-1) and drug concentration in the range of 1.67 x 10(-6) mol x L(-1) to 2.0 x 10(-5) mol x L(-1). Fluorescence quenching spectra in combination with uv absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and CD spectroscopy was used to determine the drug-binding mode, binding constant, and the protein structure changes in the presence of isofraxidin in aqueous solution. The linearity of Scatchard plot indicates that isofraxidin binds to a single class of binding sites on BSA and the values given for the binding constants agree very closely with those obtained by the modified Stern-Volmer equation. The thermodynamic parameters, enthalpy change (DeltaH) and entropy change (DeltaS), were calculated to be -17.63 kJ x mol(-1) and 51.38 J x mol(-1) x K(-1) according to the van't Hoff equation, which indicated that hydrophobic interaction played a main role in the binding of isofraxidin to BSA.  相似文献   

17.
Ye H  Qiu B  Lin Z  Chen G 《Luminescence》2011,26(5):336-341
The interaction between tamibarotene and bovine serum albumin (BSA) was studied using fluorescence quenching technique and ultraviolet–visible spectrophotometry. The results of experiments showed that tamibarotene could strongly quench the intrinsic fluorescence of BSA by a dynamic quenching mechanism. The apparent binding constant, number of binding site and corresponding thermodynamic parameters at different temperatures were calculated respectively, and the main interaction force between tamibarotene and BSA was proved to be hydrophobic force. Synchronous fluorescence spectra showed that tamibarotene changed the molecular conformation of BSA. When BSA concentration was 1.00 × 10?6 mol L?1, the quenched fluorescence ΔF had a good linear relationship with the concentration of tamibarotene in the range 1.00 × 10?6 to 12.00 × 10?6 mol L?1 with the detection limit of 6.52 × 10?7 mol L?1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The interaction between the photosensitive antitumour drug, 2(3),9(10),16(17),23(24)‐tetra‐(((2‐aminoethylamino)methyl)phenoxy)phthalocyaninato‐zinc(II) (ZnPc) and bovine serum albumin (BSA) has been investigated using various spectroscopic methods. This work may provide some useful information for understanding the interaction mechanism of anticancer drug–albumin binding and gain insight into the biological activity and metabolism of the drug in blood. Based on analysis of the fluorescence spectra, ZnPc could quench the intrinsic fluorescence of BSA and the quenching mechanism was static by forming a ground state complex. Meanwhile, the Stern–Volmer quenching constant (KSV), binding constant (Kb), number of binding sites (n) and thermodynamic parameters were obtained. Results showed that the interaction of ZnPc with BSA occurred spontaneously via hydrogen bond and van der Waal's force. According to Foster's non‐radioactive energy transfer theory, the energy transfer from BSA to ZnPc occurred with high possibility. Synchronous fluorescence and circular dichroism (CD) spectra also demonstrated that ZnPc induced the secondary structure of and conformation changes in BSA, especially α helix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
At different temperatures (298, 310 and 318 K), the interaction between gliclazide and bovine serum albumin (BSA) was investigated using fluorescence quenching spectroscopy, resonance light scattering spectroscopy and UV/vis absorption spectroscopy. The first method studied changes in the fluorescence of BSA on addition of gliclazide, and the latter two methods studied the spectral change in gliclazide while BSA was being added. The results indicated that the quenching mechanism between BSA and gliclazide was static. The binding constant (Ka), number of binding sites (n), thermodynamic parameters, binding forces and Hill's coefficient were calculated at three temperatures. Values for the binding constant obtained using resonance light scattering and UV/vis absorption spectroscopy were much greater than those obtained from fluorescence quenching spectroscopy, indicating that methods monitoring gliclazide were more accurate and reasonable. In addition, the results suggest that other residues are involved in the reaction and the mode ‘point to surface’ existed in the interaction between BSA and gliclazide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
5‐Fluorouracil (5‐FU) has been widely used as a chemotherapy agent in the treatment of many types of solid tumors. Investigation of its antimetabolites led to the development of an entire class of fluorinated pyrimidines. However, the toxicity profile associated with 5‐FU is significant and includes diarrhea, mucositis, hand–foot syndrome and myelosuppression. In aiming at reducing of the side effects of 5‐FU, we have designed and synthesized delocalized lipophilic cations (DLCs) as a vehicle for the delivery of 5‐FU. DLCs accumulate selectively in the mitochondria of cancer cells because of the high mitochondrial transmembrane potential (ΔΨm). Many DLCs exhibited anti‐cancer efficacy and were explored as potential anti‐cancer drugs based on their selective accumulation in the mitochondria of cancer cells. F16, the DLC we used as a vehicle, is a small molecule that selectively inhibits tumor cell growth and dissipates mitochondrial membrane potential. The binding of the conjugate F16–5‐FU to bovine serum albumin (BSA) was investigated using spectroscopic and molecular modeling approaches. Fluorescence quenching constants were determined using the Stern–Volmer equation to provide a measure of the binding affinity between F16–5‐FU and BSA. The activation energy of the interaction between F16–5‐FU and BSA was calculated and the unusually high value was discussed in terms of the special structural block indicated by the molecular modeling approach. Molecular modeling showed that F16–5‐FU binds to human serum albumin in site II, which is consistent with the results of site‐competitive replacement experiments. It is suggested that hydrophobic and polar forces played important roles in the binding reaction, in accordance with the results of thermodynamic experiments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号