首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
  1. Morphometric research is being applied to a growing number and variety of organisms. Discoveries achieved via morphometric approaches are often considered highly transferable, in contrast to the tacit and idiosyncratic interpretation of discrete character states. The reliability of morphometric workflows in insect systematics has never been a subject of focused research, but such studies are sorely needed. In this paper, we assess the reproducibility of morphometric studies of ants where the mode of data collection is a shared routine.
  2. We compared datasets generated by eleven independent gaugers, that is, collaborators, who measured 21 continuous morphometric traits on the same pool of individuals according to the same protocol. The gaugers possessed a wide range of morphometric skills, had varying expertise among insect groups, and differed in their facility with measuring equipment. We used intraclass correlation coefficients (ICC) to calculate repeatability and reproducibility values (i.e., intra‐ and intergauger agreements), and we performed a multivariate permutational multivariate analysis of variance (PERMANOVA) using the Morosita index of dissimilarity with 9,999 iterations.
  3. The calculated average measure of intraclass correlation coefficients of different gaugers ranged from R = 0.784 to R = 0.9897 and a significant correlation was found between the repeatability and the morphometric skills of gaugers (p = 0.016). There was no significant association with the magnification of the equipment in the case of these rather small ants. The intergauger agreement, that is the reproducibility, varied between R = 0.872 and R = 0.471 (mean R = 0.690), but all gaugers arrived at the same two‐species conclusion. A PERMANOVA test revealed no significant gauger effect on species identity (R2 = 0.69, p = 0.58).
  4. Our findings show that morphometric studies are reproducible when observers follow the standard protocol; hence, morphometric findings are widely transferable and will remain a valuable data source for alpha taxonomy.
  相似文献   

4.
  1. Shrub encroachment has far‐reaching ecological and economic consequences in many ecosystems worldwide. Yet, compositional changes associated with shrub encroachment are often overlooked despite having important effects on ecosystem functioning.
  2. We document the compositional change and potential drivers for a northern Namibian Combretum woodland transitioning into a Terminalia shrubland. We use a multiproxy record (pollen, sedimentary ancient DNA, biomarkers, compound‐specific carbon (δ13C) and deuterium (δD) isotopes, bulk carbon isotopes (δ13Corg), grain size, geochemical properties) from Lake Otjikoto at high taxonomical and temporal resolution.
  3. We provide evidence that state changes in semiarid environments may occur on a scale of one century and that transitions between stable states can span around 80 years and are characterized by a unique vegetation composition. We demonstrate that the current grass/woody ratio is exceptional for the last 170 years, as supported by n‐alkane distributions and the δ13C and δ13Corg records. Comparing vegetation records to environmental proxy data and census data, we infer a complex network of global and local drivers of vegetation change. While our δD record suggests physiological adaptations of woody species to higher atmospheric pCO2 concentration and drought, our vegetation records reflect the impact of broad‐scale logging for the mining industry, and the macrocharcoal record suggests a decrease in fire activity associated with the intensification of farming. Impact of selective grazing is reflected by changes in abundance and taxonomical composition of grasses and by an increase of nonpalatable and trampling‐resistant taxa. In addition, grain‐size and spore records suggest changes in the erodibility of soils because of reduced grass cover.
  4. Synthesis. We conclude that transitions to an encroached savanna state are supported by gradual environmental changes induced by management strategies, which affected the resilience of savanna ecosystems. In addition, feedback mechanisms that reflect the interplay between management legacies and climate change maintain the encroached state.
  相似文献   

5.
6.
Done well, citizen science projects can gather datasets of a size and scope far larger than would be possible using professional researchers. This study uses data gathered in Britain by the Garden Moth Scheme (GMS). Participants run garden light traps for at least 26 weeks a year and complete garden questionnaires detailing garden habitat and nearby landscape features. We used data exploration and generalised linear modelling (GLM) to investigate whether the data can be used to generate reliable research findings, testing the effect of moth light trap type on moth catch. Robinson traps, then Skinner traps, then Heath traps were found to catch the highest abundance and diversity of moths. Mercury vapour bulbs, then blended light bulbs, then actinic bulbs collected the highest abundance and diversity of moths. The GMS dataset can be used to generate useful and reliable research findings, and can be used in the future to investigate temporal and spatial trends in moth assemblage. Under international law, the use of mercury vapour bulbs will be phased out in coming years, leading to changes in the way moth assemblages are sampled. Information on the relative efficacy of different bulb types will aid the analysis of long‐term moth datasets after these changes.  相似文献   

7.
False codling moth Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) is an important indigenous pest of citrus in southern Africa. Successful control is dependent upon integration of area‐wide sterile insect releases and other suppression methods. The aim of this work was to test pyrethroid and organophosphate‐based insecticides (tau‐fluvalinate and chlorpyrifos) for their residual effect on mortality of released irradiated T. leucotreta male moths. Both of these insecticides were effective in killing irradiated T. leucotreta for 7 days after application on leaves, after which degradation of the active ingredient resulted in a marked reduction in efficacy after 14 days and rendering them harmless. Mortality was found to be similar for irradiated and non‐irradiated male T. leucotreta after treatment. Consequently, even though these insecticides might have an effect on moths in the field, ratios of sterile:wild moths should not be altered. Supporting field data from six sites in the Sundays River Valley over a season of sterile insect releases showed the conventional chemical crop protection programme to be as effective as an integrated pest management programme in facilitating effective control of T. leucotreta through sterile insect releases. The study also confirmed that the ratios of sterile:wild male moths in the commercial citrus orchards were not affected by the application of insecticides. These findings confirm the high potential of sterile insect releases for control of T. leucotreta in citrus.  相似文献   

8.
  1. Shrub encroachment in seminatural grasslands threatens local biodiversity unless management is applied to reduce shrub density. Dense vegetation of Cytisus scoparius homogenizes the landscape negatively affecting local plant diversity. Detecting structural change (e.g., biomass) is essential for assessing negative impacts of encroachment. Hence, exploring new monitoring tools to achieve this task is important for effectively capturing change and evaluating management activities.
  2. This study combines traditional field‐based measurements with novel Light Detection and Ranging (LiDAR) observations from an Unmanned Aircraft System (UAS). We investigate the accuracy of mapping C. scoparius in three dimensions (3D) and of structural change metrics (i.e., biomass) derived from ultrahigh‐density point cloud data (>1,000 pts/m2). Presence–absence of 12 shrub or tree genera was recorded across a 6.7 ha seminatural grassland area in Denmark. Furthermore, 10 individuals of C. scoparius were harvested for biomass measurements. With a UAS LiDAR system, we collected ultrahigh‐density spatial data across the area in October 2017 (leaf‐on) and April 2018 (leaf‐off). We utilized a 3D point‐based classification to distinguish shrub genera based on their structural appearance (i.e., density, light penetration, and surface roughness).
  3. From the identified C. scoparius individuals, we related different volume metrics (mean, max, and range) to measured biomass and quantified spatial variation in biomass change from 2017 to 2018. We obtained overall classification accuracies above 86% from point clouds of both seasons. Maximum volume explained 77.4% of the variation in biomass.
  4. The spatial patterns revealed landscape‐scale variation in biomass change between autumn 2017 and spring 2018, with a notable decrease in some areas. Further studies are needed to disentangle the causes of the observed decrease, for example, recent winter grazing and/or frost events.
  5. Synthesis and applications: We present a workflow for processing ultrahigh‐density spatial data obtained from a UAS LiDAR system to detect change in C. scoparius. We demonstrate that UAS LiDAR is a promising tool to map and monitor grassland shrub dynamics at the landscape scale with the accuracy needed for effective nature management. It is a new tool for standardized and nonbiased evaluation of management activities initiated to prevent shrub encroachment.
  相似文献   

9.
  • 1 One of the unresolved questions in studies on population dynamics of forest Lepidoptera is why some populations at times reach outbreak densities, whereas others never do. Resolving this question is especially challenging if populations of the same species in different areas or of closely‐related species in the same area are considered.
  • 2 The present study focused on three closely‐related geometrid moth species, autumnal Epirrita autumnata, winter Operophtera brumata and northern winter moths Operophtera fagata, in southern Finland. There, winter and northern winter moth populations can reach outbreak densities, whereas autumnal moth densities stay relatively low.
  • 3 We tested the hypothesis that a lower vulnerability to pupal predation may explain the observed differences in population dynamics. The results obtained do not support this hypothesis because pupal predation probabilities were not significantly different between the two genera within or without the Operophtera outbreak area or in years with or without a current Operophtera outbreak.
  • 4 Overall, pupal predation was even higher in winter and northern winter moths than in autumnal moths. Differences in larval predation and parasitism, as well as in the reproductive capacities of the species, might be other candidates.
  相似文献   

10.
  1. Short‐range endemic plants often have edaphic specializations that, with their restricted distributions, expose them to increased risk of anthropogenic extinction.
  2. Here, we present a modeling approach to understand habitat suitability for Ricinocarpos brevis R.J.F.Hend. & Mollemans (Euphorbiaceae), a threatened shrub confined to three isolated populations in the semi‐arid south‐west of Western Australia. The model is a maximum entropy species distribution projection constructed on the basis of physical soil characteristics and geomorphology data at approximately 25 m2 (1 arc‐second) resolution.
  3. The model predicts the species to occur on shallow, low bulk density soils that are located high in the landscape. The model shows high affinity (72.1% average likelihood of occurrence) for the known populations of R. brevis, as well as identifying likely locations that are not currently known to support the species. There was a strong relationship between the likelihood of R. brevis occurrence and soil moisture content that the model estimated at a depth of 20 cm.
  4. We advocate that our approach should be standardized using publicly available data to generate testable hypotheses for the distribution and conservation management of short‐range endemic plant species for all of continental Australia.
  相似文献   

11.
  1. Recent authors have suggested that declines of insect abundance or diversity, documented first for particular insect taxa of high interest (e.g., butterflies, bees), may apply to insect diversity more generally. This has led to an urgent call for analysis of additional longitudinal datasets to examine trends in general insect diversity.
  2. Here we present a dataset gathered from 1982 to 2018 by advanced undergraduate students and graduate students enrolled in a taxonomy course that involved collecting as many insect families as possible over a 5-week period at a high-elevation protected forested site in the Sierra Nevada, California, USA.
  3. The data do not support any consistent gain or loss of family-level richness between 1982 and 2018 (no linear trend); a non-linear model suggested a possible small decrease in family-level richness collected between 1986 and 1990, followed by a gradual increase from 1990 to 2018. Neither weather variables nor collector experience or skill appeared to explain among-year variation in collected insect diversity.
  4. We urge caution in attempting to draw conclusions from single-site, longitudinal datasets like this one; a definitive answer to the hypothesis of a broad, global decline of insect diversity will require the joint analysis of many datasets like the one we share here.
  相似文献   

12.
13.
14.
  1. Ponds can provide important refuges for aquatic biota on developed floodplains and are increasingly being constructed in an effort to enhance native biodiversity and ecosystem services in degraded landscapes. This study examined 34 constructed ponds to investigate the influence of design features on community composition, native biodiversity, and the biomass or abundance of common fish and waterbirds on the lower Waikato River floodplain, northern New Zealand.
  2. Inundation frequency appeared to be a key factor affecting biomass of the native shortfin eel Anguilla australis and three invasive fish species (common carp [Cyprinus carpio], brown bullhead [Ameiurus nebulosus], and goldfish [Carassius auratus]), suggesting that colonisation occurred during flooding by adjacent waterbodies. Linear models indicated that shortfin eel abundance and total eel biomass were positively associated with the biomass of potential fish prey, the area occupied by islands and cover by trees in the riparian zone.
  3. Native waterbird species richness was strongly related to water area, edge length (including islands) and area:perimeter ratio, with little increase in richness for ponds >1 ha in area, perimeters longer than 800 m, and ratios over 20. The protected grey teal (Anas gracilis), and the recreationally hunted species phenotypically assigned as mallard (Anas platyrhynchos + hybrids) and grey duck (Anas superciliosa + hybrids) appeared most strongly influenced, respectively, by perimeter length, water depth, and biomass of potential macroinvertebrate food supplies, suggesting variable effects of pond design attributes among waterfowl species.
  4. Overall, these results indicate that constructed ponds can be designed to promote native waterbird diversity, enhance eel fishery and waterfowl gamebird services, and also limit the proliferation of some non-native invasive fish species in degraded floodplain landscapes. A hierarchy of constructed pond design attributes was identified, involving landscape position and connectivity, pond morphology and complexity, and riparian maturity and buffering, which were associated with direct (habitat) and indirect (food supply, physicochemistry) effects on biodiversity and provisioning services.
  相似文献   

15.
Data‐mining techniques play an important role in hyperparameter optimization of heterogeneous environmental factors and their relative contribution as determinants of incidences in insect pest ecological studies. A multidimensional field‐based surveillance was conducted in two seasons (24 months), July–June of each season (2015/2016 ‐ season 1 and 2016/2017 ‐ season 2) using sex‐pheromone‐baited traps and Thermocron i‐Buttons to identify key determinants of population abundance of diamondback moth, Plutella xylostella L., across spatial horticultural hotspots of Botswana. The moth is a notorious global brassica pest. Pearson's product moment correlation matrix showed month of the year (M), mean temperature (Tmean) and maximum temperature (Tmax) as positively correlated (p < 0.001) to number of moths (N), while minimum temperature (Tmin), minimum relative humidity (RHmin), mean relative humidity (RHmean), maximum relative humidity (RHmax) and host plant (h) were negatively correlated (p < 0.001) to N. Using Waikato Environment for Knowledge Analysis (WEKA) data‐mining techniques, two models were developed: (a) M5P decision‐tree algorithm associated with nine linear models (LMs) and (b) principal component analysis (PCA) based on four principal components. Both approaches identified M as the major predictor of moth abundance, followed by h and farming region (R). However, R was a function of Tmax (positive auto‐correlation) and RHmax (negative auto‐correlation). These results provide simplified relative contribution of heterogeneous factors in influencing P. xylostella spatio‐temporal abundance, essential for early warning systems in pest management. This is an important component of sustainable pest management aimed at managing insect pests and minimizing pesticides abuse in brassica production systems.  相似文献   

16.
17.
  • Three synchronopatric Cactaceae species, Echinopsis rhodotricha, Harrisia balansae and Praecereus saxicola, have mostly nocturnal anthesis and similar flowers, characteristics that motivated us to perform a comparative study of reproductive ecology.
  • Reproductive phenology was sampled monthly from December 2014 to November 2015. We describe floral biology, breeding system via pollination treatments and evaluate floral visitors from focal and filming observations. Pollen grains found on moth proboscis were compared among cactus species under light microscopy. We used fluorescent dye particles to test intra‐ and interspecific pollen flow.
  • These three species have extended flowering with greater intensity in the wet season, causing high overlap. They have white and hypocrateriformis flowers that open at twilight or nightfall and last about 15 h. H. balansae seems to be self‐incompatible, while E. rhodotricha presented self‐compatibility. P. saxicola presented self‐fertility, but most of the population seems to be self‐incompatible. We suggest sphingophily for the three species, but only P. saxicola was visited by Manduca rustica (Sphingidae). However, we observed pollen grains of all three species on the proboscis of moths, especially M. rustica and M. sexta. Prolonged anthesis allowed bees (herein considered as secondary pollinators) to visit flowers of E. rhodotricha and P. saxicola.
  • It can be concluded that the studied species share nocturnal and diurnal pollinators, suggesting interspecific pollen flow, which, however, could not be detected with fluorescent dye particles. In view of the low frequency of primary pollinators, it appears that these three species have different reproductive strategies, ensuring the fruiting and production of viable seeds.
  相似文献   

18.
  1. As global temperatures continue to rise, assessment of how species within ecological communities respond to shifts in temperature has become increasingly important. However, such assessments require detailed long-term observations or ecosystem-level manipulations that allow for interactions among species and the potential for species dispersal and exchange with the regional species pool.
  2. We examined the effects of experimental whole-stream warming on a larval black fly assemblage in southwest Iceland. We used a paired-catchment design, in which we studied the warmed stream and a nearby reference stream for 1 year prior to warming and 2 years during warming and estimated population abundance, biomass, secondary production, and growth rates for larvae of three black fly species.
  3. Experimental warming by 3.8°C had contrasting effects on the three black fly species in the assemblage. The abundance, biomass, growth, and production of Prosimulium ursinum decreased in the experimental stream during the warming manipulation. Despite increasing in the reference stream, the abundance, biomass, and production of another species, Simulium vernum, decreased in the experimental stream during warming.
  4. In contrast, warming had an overall positive effect on Simulium vittatum. While warming had little effect on the growth of overwintering cohorts of S. vittatum, warming led to an additional cohort during the summer months and increased its abundance, biomass, and production. Overall, family-level production was enhanced by warming, despite variation in species-level responses.
  5. Our study illustrates that the effects of climate warming are likely to differ even among closely related species. Moreover, our study highlights the need for further investigation into the uneven effects of warming on individual species and how those variable effects influence food web dynamics and ecosystem function.
  相似文献   

19.
20.
The ability of a sufficient number of individuals to disperse is crucial for long‐term survival of populations. However, dispersal is often energetically costly, and thus is expected to trade‐off against other life‐history traits. In insect pest species, the occurrence of individuals with high flight activity challenges management practices. We performed artificial selection on flight activity and measured correlated responses to selection in the oriental fruit moth, Grapholita (= Cydia) molesta, a widely distributed and expanding lepidopteran pest of fruit crops. Both sexes rapidly responded to the imposed regime of divergent selection, indicating an adaptive potential of flight activity in this species. Upward‐selected moths died sooner than downward‐selected ones, providing evidence for a cost of flight activity to adult survival, reputedly associated with enhanced metabolic rates. Oppositely‐selected females had similar total reproductive output, disproving a trade‐off between dispersal and reproduction, although females with higher flight activity laid their eggs sooner. The ratio of body weight to forewing surface (forewing loading) did not significantly differ between selected lines. The present study contributes to the understanding of dispersal evolution, and also provides new insights into life‐history theory as well as important baseline data for the improvement of pest management practices. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 879–889.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号