首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 697 毫秒
1.
The geothermal sites near neutral and alkalescent thermal springs in Tengchong Rehai National Park were examined through cultivation-dependent approach to determine the diversity of thermophilic fungi in these environments. Here, we collected soils samples in this area, plated on agar media conducive for fungal growth, obtained pure cultures, and then employed the method of internal transcribed spacer (ITS) sequencing combined with morphological analysis for identification of thermophilic fungi to the species level. In total, 102 strains were isolated and identified as Rhizomucor miehei, Chaetomium sp., Talaromyces thermophilus, Talaromyces byssochlamydoides, Thermoascus aurantiacus Miehe var. levisporus, Thermomyces lanuginosus, Scytalidium thermophilum, Malbranchea flava, Myceliophthora sp. 1, Myceliophthora sp. 2, Myceliophthora sp. 3, and Coprinopsis sp. Two species, T. lanuginosus and S. thermophilum were the dominant species, representing 34.78% and 28.26% of the sample, respectively. Our results indicated a greater diversity of thermophilic fungi in neutral and alkaline geothermal sites than acidic sites around hot springs reported in previous studies. Most of our strains thrived at alkaline growth conditions.  相似文献   

2.
Sequences from 86 fungal genomes and from the two outgroup genomes Arabidopsis thaliana and Drosophila melanogaster were analyzed to construct a robust molecular phylogeny of thermophilic fungi, which are potentially rich sources of industrial enzymes. To provide experimental reference points, growth characteristics of 22 reported thermophilic or thermotolerant fungi, together with eight mesophilic species, were examined at four temperatures: 22 °C, 34 °C, 45 °C, and 55 °C. Based on the relative growth performances, species with a faster growth rate at 45 °C than at 34 °C were classified as thermophilic, and species with better or equally good growth at 34 °C compared to 45 °C as thermotolerant. We examined the phylogenetic relationships of a diverse range of fungi, including thermophilic and thermotolerant species, using concatenated amino acid sequences of marker genes mcm7, rpb1, and rpb2 obtained from genome sequencing projects. To further elucidate the phylogenetic relationships in the thermophile-rich orders Sordariales and Eurotiales, we used nucleotide sequences from the nuclear ribosomal small subunit (SSU), the 5.8S gene with internal transcribed spacers 1 and 2 (ITS 1 and 2), and the ribosomal large subunit (LSU) to include additional species for analysis. These phylogenetic analyses clarified the position of several thermophilic taxa. Thus, Myriococcum thermophilum and Scytalidium thermophilum fall into the Sordariales as members of the Chaetomiaceae, Thermomyces lanuginosus belongs to the Eurotiales, Malbranchea cinnamomea is a member of the Onygenales, and Calcarisporiella thermophila is assigned to the basal fungi close to the Mucorales. The mesophilic alkalophile Acremonium alcalophilum clusters with Verticillium albo-atrum and Verticillium dahliae, placing them in the recently established order Glomerellales. Taken together, these data indicate that the known thermophilic fungi are limited to the Sordariales, Eurotiales, and Onygenales in the Ascomycota and the Mucorales with possibly an additional order harbouring C. thermophila in the basal fungi. No supporting evidence was found for thermophilic species belonging to the Basidiomycota.  相似文献   

3.
The composition and genetic diversity of fungal populations during phase II of compost production for the cultivation of Agaricus subrufescens was determined using culture-dependent and -independent methods on days 3, 6, 10, 12, and 14 of phase II composting. The isolates were morphologically characterized and subsequently analyzed using repetitive extragenic palindromic sequences (rep-PCR), and the intergenic region was sequenced to genetically identify the isolates. Changes on in the filamentous fungi population were analyzed using denaturing gradient gel electrophoresis (DGGE), and the resulting bands were sequenced. The population did not significantly change from day 3 to 10 (2.55 x 105 –6 x 105 CFU g?1), and maximum counts on day 14 of phase II composting (6.92 log CFU g?1). In the morphological characterization, Scytalidium thermophilum, Thermomyces lanuginosus, and Thermomyces ibadanensis were the most abundant identified species. The 26 most abundant isolates identified by morphological analysis were characterized using rep-PCR. A significant amount of genetic diversity was detected among the isolates of all three studied species. Based on the DGGE analysis, the diversity of the fungi was reduced during phase II composting, and S. thermophilum was the predominant species identified throughout the entire process. Thus, this study presents the first report of the involvement of T. ibadanensis in the production of compost for Agaricus mushroom cultivation.  相似文献   

4.
Twenty-two species of thermophilic fungi were isolated from mushroom compost. Scytalidium thermophilum was present in the compost ingredients, fresh straw, horse droppings, and drainage from compost and dominated the fungal biota of compost after preparation. Of 34 species of thermophilic fungi tested, 9 promoted mycelial growth of Agaricus bisporus on sterilized compost: Chaetomium thermophilum, an unidentified Chaetomium sp., Malbranchea sulfurea, Myriococcum thermophilum, S. thermophilum, Stilbella thermophila, Thielavia terrestris, and two unidentified basidiomycetes. These species will be considered for future experiments on inoculation and more controlled preparation of compost.  相似文献   

5.
The changes in thermophilic fungi and biochemical characteristics, during windrow and bunker stages of phase I and phase II composts, were compared in this investigation. Composts prepared by the two phase I systems differed in a number of key parameters including mean straw length, population of Scytalidium thermophilum, dry matter, conductivity, nitrogen dry matter, ammonia, fibre content and ash. S. thermophilum populations in phase I composts were significantly higher in windrow compared to bunker‐composted materials as a result of the larger high temperature (65‐80°C) core in bunker treatment, which inhibited microbial activity. Assessment of the composts for loss of matter during composting has revealed that the bunker system can conserve fresh matter better than the windrow production system, possibly due to lower microbial activities during bunker composting. The productivity of the phase II composts prepared from windrow and bunker systems was compared in trials using commercial growers.  相似文献   

6.
The purified trehalases of the mesophilic fungus, Neurospora crassa, and the thermophilic fungus, Thermomyces lanuginosus, had similar temperature and pH optima for activity, but differed in molecular weight, electrophoretic mobility and Michaelis constant. At lower concentration, trehalases from both fungi were inactivated to similar extent at 60°C. While purified trehalase of T. lanuginosus was afforded protection against heat-inactivation by proteinaceous protective factor(s) present in mycelial extracts, by bovine serum albumin and by casein, these did not afford protection to N. crassa trehalase against heat inactivation. Both trehalases exhibited discontinuous Arrhenius plots with temperature of discontinuity at 40°C. The activation energy calculated from the slope of the Arrhenius plot was higher for the T. lanuginosus enzyme. The plots of apparent K m versus 1/T for trehalases of N. crassa and T. lanuginosus were linear from 30° to 60°C.The results show that purified trehalases of the mesophilic and the thermophilic fungus are distinct. Although, these exhibit similar thermostability of their catalytic function at low concentration, distinctive thermal stability characteristics of thermophilic enzyme become apparent at high protein concentration. This could be brought about in the cell by the enzyme itself, or by other proteins.  相似文献   

7.
An attempt has been made to forecast the potential of thermophilic fungi to grow in soil in the laboratory and in the field in the presence of a predominantly mesophilic fungal flora at usual temperature. The respiratory rate of thermophilic fungi was markedly responsive to changes in temperature, but that of mesophilic fungi was relatively independent of such changes. This suggested that in a thermally fluctuating environment, thermophilic fungi may be at a physiological disadvantage compared to mesophilic fungi. In mixed cultures in soil plates, thermophilic fungi outgrew mesophilic fungi under a fluctuating temperature regime only when the amplitude of the fluctuating temperatures was small and approached their temperature optima for growth. An antibody probe was used to detect the activity of native or an introduced strain of a thermophilic fungus,Thermomyces lanuginosus, under field conditions. The results suggest that although widespread, thermophilic fungi are ordinarily not an active component of soil microflora. Their presence in soil most likely may be the result of the aerial dissemination of propagules from composting plant material.  相似文献   

8.
Mesophilic fungi isolated from organic fertilizer compost samples accounted for 70.94% of the total fungal count, while thermophilic and thermotolerant fungi constituted 29.05% of that count. Eight mesophilic fungal species, namelyAspergillus niger, Monilia sitophila, Paecilomyces divaricata, Penicillium chrysogenum, P. fellutanum, Scopulariopsis brevicaulis, S. brumptii andZygorhynchus japonicus; two thermophilic fungiHumicola grisea andOidiodendron flavum and three thermotolerant speciesAspergillus fumigatus, Thermomyces lanuginosus andZygorhynchus vuilleminii were isolated during the study. Most of the tested fungi showed a proteolytic activity and liquified gelatin in the test tube method and in cup plates. The thermophilic fungusO. flavum was the most potent proteolytic fungus. The comparative fibrinolytic assay revealed the following sequence in the ability of the tested fungi to hydrolyse fibrin:O. fiavum>S. brevicaulis>H. grisea>A. fumigatus>T. lanuginosus.  相似文献   

9.
The thermophilic fungi Thermomyces lanuginosus, Malbranchea cinnamomea, Myceliophthora fergusii and the thermotolerant Aspergillus terreus were cultivated on various carbon sources, and hemicellulolytic and cellulolytic enzyme profiles were evaluated. All fungi could grow on locust bean galactomannan (LBG), Solka floc, wheat bran and pectin, except T. lanuginosus, which failed to utilize LBG for growth. Different levels of cellulase and hemicellulase activities were produced by these fungal strains. Depending on the carbon source, variable ratios of thermostable hydrolytic enzymes were obtained, which may be useful in various applications. All strains were found to secrete xylanolytic and mannanolytic enzymes. Generally, LBG was the most efficient carbon source to induce mannanase activities, although T. lanuginosus was able to produce mannanase only on wheat bran as a carbon source. Xylanolytic activities were usually highest on wheat bran medium, but in contrast to other investigated fungi, xylanase production by M. fergusii was enhanced on pectin medium. Preliminary thermostability screening indicated that among the investigated species, thermotolerant glycosidases can be found. Some of the accessory activities, including the α-arabinosidase activity, were surprisingly high. The capability of the produced enzymes to improve the hydrolysis of lignocellulosic pretreated substrate was evaluated and revealed potential for these enzymes.  相似文献   

10.
The respiratory rates of mycelia of the mesophilic fungus, Aspergillus niger, and the thermophilic fungus, Thermomyces lanuginosus, were comparable at their respective temperature optima for growth. The respiratory rate of A. niger was independent of changes in temperature between 15 and 40 C. The respiratory rate of T. lanuginosus increased with increase in temperature between 25 and 55 C.  相似文献   

11.
Summary The isolation of thermophilic fungi from peat is reported and their taxonomy is discussed. Mucor pusillus was frequently found in peat. Humicola was recorded for the first time as occurring in peat. The thermophilic strains were classified as H. insolens, H. stellatus, and H. lanuginosus respectively. Paecilomyces commonly occur in peat. Up to now only thermotolerant Pacecilomyces were reported. Our thermophilic strains resemble Paecilomyces in appearance, but after detailed examination may belong to the related genera Talaromyces or also Thermoascus.Because of its wide temperature range Aspergillus fumigatus was very frequently isolated under thermophilic conditions.Part I.: see Küster, E., and R. Locci: Arch. Mikrobiol. 45, 188–197 (1963).  相似文献   

12.
In contrast to a published report [Wali et al. Arch Microbiol 118:49–53 (1978)], an organic acid is not essential for the growth of thermophilic fungi. The thermophilic fungus, Thermomyces lanuginosus, grows satisfactorily in a synthetic medium containing glucose as carbon source if the pH of the medium is controlled. The control of pH is essential for the concentration of carbon dioxide in the growth medium and the activity of anaplerotic enzyme, pyruvate carboxylase.Abbreviations PEP phosphoenolpyruvate - GDP guanosine 5-diphosphate  相似文献   

13.
Summary Thermomyces lanuginosus CAU44, a newly isolated thermophilic fungus strain, was used for the production of extracellular xylanase on various lignocellulosic materials under shake flask conditions. High-level production of xylanase by the strain was enhanced by optimizing the type of carbon sources, substrate concentration, particle size and surfactants in the culture medium. The titre of xylanase activity obtained of up to 4156 U ml−1 was the highest ever reported.  相似文献   

14.
15.
The fungi communities of both multiple-grains and single-grains Zaopei were analyzed by denaturing gradient gel electrophoresis (DGGE) and traditional identification methods. The results of the DGGE fingerprint and the dendrogram based on banding patterns showed the diversified community structure and the phylogenetic affiliation of different Zaopei samples. The results indicated that the fungi community was affected by both raw materials and fermentation location. The genera of Debaryomyces, Pichia and Candida were dominant communities in multiple-grains Zaopei suggested by the results of both DGGE and the traditional methods, the DGGE result suggested Candida dominant in single-grains Zaopei was much different from the results by traditional method. Additionally, DGGE results showed the existence of thermophilic fungi (Thermomyces lanuginosus and Thermoascus aurantiacus) which were not detected by the traditional method. This work may contribute to further understanding of the brewing in Chinese Luzhou-flavor liquor.  相似文献   

16.
The interaction betweenAgaricus bisporus andScytalidium thermophilum on agar media was studied by differential interference contrast and phase contrast microscopy.A. bisporus combatively replacesS. thermophilum in culture on agar media. The antagonistic effect ofA. bisporus is transmissible through a cellophane membrane and causes irreversible disintegration ofS. thermophilum protoplasm, resulting in a total loss of viability after prolonged interaction between the two fungi. On compost extract agar, but not on other media, the growth rate ofA. bisporus increased from 2.7 to 5.3 mm·d–1 following contact withS. thermophilum mycelium.  相似文献   

17.
Fungi isolated from Antarctic material   总被引:1,自引:1,他引:0  
Summary Fungi isolated from samples of soil, penguin, skua and petrel dung and bird feathers in the Victoria Land, Antarctica, from Inexpressible Island to Cape King, were studied. All material was collected in December 1987–January 1988. Fungi occurred prevalently in bird dung and in soil, especially when mosses were present. The main species isolated were: the keratinophilic Chrysosporium verrucosum and Geomyces pannorum var. pannorum, Phoma herbarum and Thelebolus microsporus. A variety of filamentous fungi and yeasts were also encountered in soil, dung and bird feathers samples in different localities: Acremonium strictum, Cladosporium herbarum, Scolecobasidium salinum, Mortierella antarctica, Paecilomyces farinosus, Phialophora fastigiata, the thermophilic Scytalidium thermophile and Thermomyces lanuginosus, Verticillium sp., Mycelia sterilia and Cryptococcus albidus and Torulaspora delbrueckii. Most of the fungal isolates appeared to be cold-tolerant. Results from this study are discussed in conjuction with data from previous Antarctic studies in this area.  相似文献   

18.
Summary The pH-value and the stirrer speed during cultivation of the thermophilic fungus Thermomyces lanuginosus were found to have a pronounced influence on xylanase production using corn cobs as carbon source. The highest xylanase activity of 32500 nkat/ml was produced in labscale fermentation within 118 hours at a stirrer speed of 50 rpm and a controlled pH-value of 7.5.  相似文献   

19.
Summary The stability of endo--xylanase produced by the thermophilic fungus Thermomyces lanuginosus was examined at various temperatures and pH values. The enzyme was highly stable in the pH range from 6 to 9. The rate of inactivation was shown to follow first order kinetics. The half lives of enzyme activity as well as the activation energies of the inactivation at pH values between 5 and 11 were determined.  相似文献   

20.
Hygromycin-resistant stable transformants of the thermophilic fungus, Thermomyces lanuginosus, were obtained by electroporation of germinating aleurospores with a plasmid pMP6, coding for hygromycin resistance. Southern hybridization analysis revealed that the gene is integrated into the chromosome. The hygromycin-resistant transformants were characterized for morphological changes, growth response towards the presence of antagonistic metabolites (hygromycin, 2-deoxy-D-glucose, cylcoheximide, benlate and acriflavine) on plates and enzyme production (amylases, pectinases and xylanase) in shake flask cultures. A hygromycin-resistant transformant hyg 33 was characterized as non-sporulating, 2-deoxy-D-glucose-resistant, acriflavine-sensitive and xylanase hypo-producer and is being used as parental strain for breeding strains through protoplast fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号