首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
转运蛋白是一类膜蛋白,可介导生物膜内外化学物质的跨膜转运及信号交换。有机酸转运蛋白在微生物有机酸代谢的跨膜转运过程中发挥重要作用,根据转运蛋白有机酸转运的方向不同可以分为摄取转运蛋白和外排转运蛋白。在微生物代谢中,有些有机酸可以作为能源直接参与体内代谢,有些是能量转换过程中的重要中间产物;摄取转运蛋白的过表达,可以促进微生物细胞获取能源物质,高效的生产目标产物;有机酸摄取转运蛋白敲除或外排转运蛋白表达,有利于底盘细胞外排更多目标产物,进而促进有机酸的生物合成。研究有机酸转运蛋白的结构和功能,有助于解析微生物细胞有机酸生物合成及利用的机制,对于提高工业微生物对有机酸的利用及生物合成具有重要作用。本文综述了微生物有机酸转运蛋白分类和结构、转运方式和转运功能等方面,重点综述了转运蛋白在有机酸生产中的应用,为工业微生物有机酸的高效生物合成及未来发展提供参考。  相似文献   

2.
Lipid rafts have been implicated in many cellular functions, including protein and lipid transport and signal transduction. ATP-binding cassette (ABC) transporters have also been localized in these membrane domains. In this review the evidence for this specific localization will be evaluated and discussed in terms of relevance to ABC transporter function. We will focus on three ABC transporters of the A, B and C subfamily, respectively. Two of these transporters are relevant to multidrug resistance in tumor cells (Pgp/ABCB1 and MRP1/ABCC1), while the third (ABCA1) is extensively studied in relation to the reverse cholesterol pathway and cellular cholesterol homeostasis. We will attempt to derive a generalized model of lipid rafts to which they associate based on the use of various different lipid raft isolation procedures. In the context of lipid rafts, modulation of ABC transporter localization and function by two relevant lipid classes, i.e. sphingolipids and cholesterol, will be discussed.  相似文献   

3.
The active extrusion of cytotoxic compounds from the cell by multidrug transporters is one of the major causes of failure of chemotherapeutic treatment of tumor cells and of infections by pathogenic microorganisms. The secondary multidrug transporter LmrP and the ATP-binding cassette (ABC) type multidrug transporter LmrA in Lactococcus lactis are representatives of the two major classes of multidrug transporters found in pro- and eukaryotic organisms. Therefore, knowledge of the molecular properties of LmrP and LmrA will have a wide significance for multidrug transporters in all living cells, and may enable the development of specific inhibitors and of new drugs which circumvent the action of multidrug transporters. Interestingly, LmrP and LmrA are transport proteins with very different protein structures, which use different mechanisms of energy coupling to transport drugs out of the cell. Surprisingly, both proteins have overlapping specificities for drugs, are inhibited by t he same set of modulators, and transport drugs via a similar transport mechanism. The structure-function relationships that dictate drug recognition and transport by LmrP and LmrA will represent an intriguing new area of research.  相似文献   

4.
Human organic anion transporter hOAT1 plays a critical role in the body disposition of environmental toxins and clinically important drugs including anti-HIV therapeutics, anti-tumor drugs, antibiotics, anti-hypertensives, and anti-inflammatories. In the current study, we investigated the role of dileucine (L6L7) at the amino terminus of hOAT1 in the expression and function of the transporter. We substituted L6L7 with alanine (A) simultaneously. The resulting mutant transporter L6A/L7A showed no transport activity due to its complete loss of expression at the cell surface. Such loss of surface expression of L6A/L7A was consistent with a complete loss of an 80 kDa mature form and a dramatic decrease in a 60 kDa immature form of the mutant transporter in the total cell lysates. Treatment of L6A/L7A-expressing cells with proteasomal inhibitor resulted in a significant increase in the immature form of hOAT1, but not its mature form, whereas treatment of these cells with lysosomal inhibitor had no effect on the expression of the mutant transporters, suggesting that the mutant transporter was degraded through proteasomal pathway. The accumulation of mutant transporter in the endoplasmic reticulum (ER) was confirmed by coimmunolocalization of L6L7 with calnexin, an ER marker. Furthermore, treatment of L6A/L7A-expressing cells with sodium 4-phenylbutyrate (4PBA) and glycerol, two chemical chaperones, could not promote the exit of the immature form of the mutant transporter from the ER. Our data suggest that L6L7 are critical for the stability and ER export of hOAT1.  相似文献   

5.
植物对硅的吸收转运机制研究进展   总被引:2,自引:0,他引:2  
硅(Si)能缓解生物与非生物胁迫对植物的毒害作用,Si的吸收转运是由Si转运蛋白介导的.最近,多个Si转运蛋白(Lsi)基因相继在水稻、大麦和玉米中被克隆出来,并在Si的吸收转运机制方面取得了很大进展.水稻OsLsi在根组织中呈极性分布,OsLsi1定位在根外皮层和内皮层凯氏带细胞外侧质膜,负责将外部溶液中的单硅酸转运到皮层细胞内.OsLsi2定位在凯氏带细胞内侧质膜,在外皮层中负责将Si输出到通气组织质外体中,在内皮层与OsLsi1协同作用将Si转运到中柱中.导管中的Si通过蒸腾流转运到地上部,再由定位在叶鞘和叶片木质部薄壁细胞靠近导管一侧的OsLsi6负责木质部Si的卸载和分配.在大麦和玉米中,ZmLsi1/HvLsi1定位在根表皮和皮层细胞外侧质膜负责Si的吸收,然后Si通过共质体途径被转运到内皮层凯氏带细胞中,再由ZmLsi2/HvLsi2输出转运到中柱中.ZmLsi6在细胞中的定位和活性与OsLsi6相似,推测其可能具有类似的功能,但大麦Lsi6至今未见报道.所以,Si转运机制仍需要进一步研究.  相似文献   

6.
ATP-binding cassette (ABC) transporters are integral membrane proteins that actively transport molecules across cell membranes. In Escherichia coli they consist primarily of import systems that involve in addition to the ABC transporter itself a substrate binding protein and outer membrane receptors or porins, and a number of transporters with varied functions. Recent crystal structures of a number of ATPase domains, substrate binding proteins, and full-length transporters have given new insight in the molecular basis of transport. Bioinformatics approaches allow an approximate identification of all ABC transporters in E. coli and their relation to other known transporters. Computational approaches involving modeling and simulation are beginning to yield insight into the dynamics of the transporters. We summarize the function of the known ABC transporters in E. coli and mechanistic insights from structural and computational studies.  相似文献   

7.
Plants produce a large number of secondary metabolites, such as alkaloids, terpenoids, and phenolic compounds. Secondary metabolites have various functions including protection against pathogens and UV light in plants, and have been used as natural medicines for humans utilizing their diverse biological activities. Many of these natural compounds are accumulated in a particular compartment such as vacuoles, and some are even translocated from source cells to sink organs via long distance transport. Both primary and secondary transporters are involved in such compartmentation and translocation, and many transporter genes, especially genes belonging to the multidrug and toxin extrusion type transporter family, which consists of 56 members in Arabidopsis, have been identified as responsible for the membrane transport of secondary metabolites. Better understandings of these transporters as well as the biosynthetic genes of secondary metabolites will be important for metabolic engineering aiming to increase the production of commercially valuable secondary metabolites in plant cells.  相似文献   

8.
Glutamate is the major excitatory neurotransmitter in the mammalian CNS. The spatiotemporal profile of the glutamate concentration in the synapse is critical for excitatory synaptic signalling. The control of this spatiotemporal concentration profile requires the presence of large numbers of synaptically localized glutamate transporters that remove pre-synaptically released glutamate by uptake into neurons and adjacent glia cells. These glutamate transporters are electrogenic and utilize energy stored in the transmembrane potential and the Na+/K+-ion concentration gradients to accumulate glutamate in the cell. This review focuses on the kinetic and electrogenic properties of glutamate transporters, as well as on the molecular mechanism of transport. Recent results are discussed that demonstrate the multistep nature of the transporter reaction cycle. Results from pre-steady-state kinetic experiments suggest that at least four of the individual transporter reaction steps are electrogenic, including reactions associated with the glutamate-dependent transporter halfcycle. Furthermore, the kinetic similarities and differences between some of the glutamate transporter subtypes and splice variants are discussed. A molecular mechanism of glutamate transport is presented that accounts for most of the available kinetic data. Finally, we discuss how synaptic glutamate transporters impact on glutamate receptor activity and how transporters may shape excitatory synaptic transmission.  相似文献   

9.
10.
ATP binding cassette (ABC) transporters comprise an extended protein family involved in the transport of a broad spectrum of solutes across membranes. They consist of a common architecture including two ATP-binding domains converting chemical energy into conformational changes and two transmembrane domains facilitating transport via alternating access. This review focuses on the biogenesis, and more precisely, on the degradation of mammalian ABC transporters in the endoplasmic reticulum (ER). We enlighten the ER-associated degradation pathway in the context of misfolded, misassembled or tightly regulated ABC transporters with a closer view on the cystic fibrosis transmembrane conductance regulator (CFTR) and the transporter associated with antigen processing (TAP), which plays an essential role in the adaptive immunity. Three rather different scenarios affecting the stability and degradation of ABC transporters are discussed: (1) misfolded domains caused by a lack of proper intra- and intermolecular contacts within the ABC transporters, (2) deficient assembly with auxiliary factors, and (3) arrest and accumulation of an intermediate or ‘dead-end’ state in the transport cycle, which is prone to be recognized by the ER-associated degradation machinery.  相似文献   

11.
ATP-binding cassette (ABC) transporters encompass membrane transport proteins that couple the energy derived from ATP hydrolysis to the translocation of solutes across biological membranes. The functions of these proteins include ancient and conserved mechanisms related to nutrition and pathogenesis in bacteria, spore formation in fungi, and signal transduction, protein secretion and antigen presentation in eukaryotes. Furthermore, one of the major causes of drug resistance and chemotherapeutic failure in both cancer and anti-infective therapies is the active movement of compounds across membranes carried out by ABC transporters. Thus, the clinical relevance of ABC transporters is enormous, and the membrane transporters related to chemoresistance are among the best-studied members of the ABC transporter superfamily. As ABC transporter blockers can be used in combination with current drugs to increase their efficacy, the (possible) impact of efflux pump inhibitors is of great clinical interest. The present review summarizes the progress made in recent years in the identification, design, availability, and applicability of ABC transporter blockers in experimental scenarios oriented towards improving the treatment of infectious diseases caused by microorganisms including parasites.  相似文献   

12.
Monocarboxylate transporters (MCTs) are proton-linked membrane carriers involved in the transport of monocarboxylates such as lactate, pyruvate, as well as ketone bodies. They belong to a larger family of transporters composed of 14 members in mammals based on sequence homologies. MCTs are found in various tissues including the brain where three isoforms, MCT1, MCT2 and MCT4, have been described. Each of these isoforms exhibits a distinct regional and cellular distribution in rodent brain. At the cellular level, MCT1 is expressed by endothelial cells of microvessels, by ependymocytes as well as by astrocytes. MCT4 expression appears to be specific for astrocytes. By contrast, the predominant neuronal monocarboxylate transporter is MCT2. Interestingly, part of MCT2 immunoreactivity is located at postsynaptic sites, suggesting a particular role of monocarboxylates and their transporters in synaptic transmission. In addition to variation in expression during development and upon nutritional modifications, new data indicate that MCT expression is regulated at the translational level by neurotransmitters. Understanding how transport of monocarboxylates is regulated could be of particular importance not only for neuroenergetics but also for areas such as functional brain imaging, regulation of food intake and glucose homeostasis, or for central nervous system disorders such as ischaemia and neurodegenerative diseases.  相似文献   

13.
Transfer of glutamine between astrocytes and neurons   总被引:6,自引:0,他引:6  
The export of glutamine from astrocytes, and the uptake of glutamine by neurons, are integral steps in the glutamate-glutamine cycle, a major pathway for the replenishment of neuronal glutamate. We review here the functional and molecular identification of the transporters that mediate this transfer. The emerging picture of glutamine transfer in adult brain is of a dominant pathway mediated by system N transport (SN1) in astrocytes and system A transport (SAT/ATA) in neurons. The participating glutamine transporters are functionally and structurally related, sharing the following properties: (a) unlike many neutral amino acid transporters which have proven to be obligate exchangers, these glutamine transporters mediate net substrate transfer energized by coupling to ionic gradients; (b) they are sensitive to small pH changes in the physiological range; (c) they are susceptible to adaptive and humoral regulation; (d) they are related structurally to the AAAP (amino acid and auxin permeases) family of transporters. A key difference between SN1 and the SAT/ATA transporters is the ready reversibility of glutamine fluxes via SN1 under physiological conditions, which allows SN1 both to sustain a glutamine concentration gradient in astrocytes and to mediate the net outward flux of glutamine. It is likely that the ASCT2 transporter, an obligate exchanger of neutral amino acids, displaces the SN1 transporter as the main carrier of glutamine export in proliferating astrocytes.  相似文献   

14.
【背景】跨膜转运蛋白在微生物转运各种物质的过程中具有重要作用。【目的】通过比较原核微生物组磷酸转移酶(phosphotransferasesystem,PTS)系统和腺苷三磷酸结合盒(ATP-binding cassette,ABC)转运蛋白编码基因在两种不同生物土壤结皮中(藻结皮与藓结皮)的差异,以期揭示随着生物土壤结皮的发育演替,微生物组跨膜转运物质的生物学过程中的潜在变化趋势。【方法】对腾格里沙漠东南缘的藻结皮和藓结皮12个样品进行宏基因组测序,参照KEGG数据库PTS系统,与ABC转运蛋白代谢通路进行比较并筛选相关基因,分析其差异显著性。【结果】藻结皮和藓结皮PTS系统和ABC转运蛋白编码基因的多样性一致。在生物土壤结皮中共检测到16种PTS系统的转运蛋白的编码基因,具有显著性差异的有5种;检测到106种ABC转运蛋白的编码基因,具有显著性差异的有46种,并对这46种转运蛋白结合的底物以及变化趋势进行了详细的描述。【结论】生物土壤结皮发育演替过程中,微生物组从环境中摄取能够增加渗透势物质的潜力总体呈现降低趋势,转运氨基酸、细胞膜和细胞壁组分的潜力总体呈现增加趋势,对于矿物离子、...  相似文献   

15.
A common mechanism for high affinity carbohydrate uptake in microbial species is the phosphoenolpyruvate‐dependent phosphotransferase system (PTS). This system consists of a shared component, EI, which is required for all PTS transport, and numerous carbohydrate uptake transporters. In Vibrio cholerae, there are 13 distinct PTS transporters. Due to genetic redundancy within this system, the carbohydrate specificity of each of these transporters is not currently defined. Here, using multiplex genome editing by natural transformation (MuGENT), we systematically dissect PTS transport in V. cholerae. Specifically, we generated a mutant strain that lacks all 13 PTS transporters, and from this strain, we created a panel of mutants where each expresses a single transporter. Using this panel, we have largely defined the carbohydrate specificities of each PTS transporter. In addition, this analysis uncovered a novel glucose transporter. We have further defined the mechanism of this transporter and characterized its regulation. Using our 13 PTS transporter mutant, we also provide the first clear evidence that carbohydrate transport by the PTS is not essential during infection in an infant mouse model of cholera. In summary, this study shows how multiplex genome editing can be used to rapidly dissect complex biological systems and genetic redundancy in microbial systems.  相似文献   

16.
Nucleotide-sugar transporters (NSTs) form a family of structurally related transmembrane proteins that transport nucleotide-sugars from the cytoplasm to the endoplasmic reticulum and Golgi lumen. In these organelles, activated sugars are substrates for various glycosyltransferases involved in oligo- and polysaccharide biosynthesis. The Arabidopsis thaliana genome contains more than 40 members of this transporter gene family, of which only a few are functionally characterized. In this study, two Arabidopsis UDP-galactose transporter cDNAs (UDP-GalT1 and UDP-GalT2) are isolated by expression cloning using a Chinese hamster ovary cell line (CHO-Lec8) deficient in UDP-galactose transport. The isolated genes show only 21% identity to each other and very limited sequence identity with human and yeast UDP-galactose transporters and other NSTs. Despite this low overall identity, the two proteins clearly belong to the same gene family. Besides complementing Lec8 cells, the two NSTs are shown to transport exclusively UDP-galactose by an in vitro NST assay. The most homologous proteins with known function are plant transporters that locate in the inner chloroplast membrane and transport triose-phosphate, phosphoenolpyruvate, glucose-6-phosphate, and xylulose 5-phosphate. Also, the latter proteins are members of the same family, which therefore has been named the NST/triose-phosphate transporter family.  相似文献   

17.
In plants, secondary metabolites play important roles in adaptation to the environment. Nicotine, a pyridine alkaloid in Nicotiana tabacum, functions as chemical barrier against herbivores. Nicotine produced in the root undergoes long-distance transport and accumulates mainly in the leaves. Since production of such defensive compounds is costly, plants must regulate the allocation of the products to their tissues; however, the molecular mechanism of nicotine translocation remains unclear. Our recent studies identified a novel multidrug and toxic compound extrusion (MATE)-type nicotine transporter, JAT2 (jasmonate-inducible alkaloid transporter 2). This transporter is specifically expressed in leaves, localizes to the tonoplast, and transports nicotine as its substrate. The specific induction of JAT2 expression in leaves by methyl jasmonate (MeJA) treatment suggests that this transporter plays an important role in nicotine distribution to leaves, especially under herbivore attack, by transporting nicotine into the vacuole. Considering JAT2, together with the previously identified MATE transporters JAT1, MATE1, and MATE2, and the PUP (purine permease) transporter NUP1 (nicotine uptake permease1), we show a model of nicotine translocation and accumulation via distinct spatio-temporal regulation of nicotine transporter expression. Furthermore, we discuss the possible role of nicotine transporters in determining outcrossing rates and seed production.  相似文献   

18.
The ATP-binding cassette (ABC) transporter superfamily is a large gene family that has been highly conserved throughout evolution. The physiological importance of these membrane transporters is highlighted by the large variety of substrates they transport, and by the observation that mutations in many of them cause heritable diseases in human. Likewise, overexpression of certain ABC transporters, such as P-glycoprotein and members of the multidrug resistance associated protein (MRP) family, is associated with multidrug resistance in various cells and organisms. Understanding the structure and molecular mechanisms of transport of the ABC transporters in normal tissues and their possibly altered function in human diseases requires large amounts of purified and active proteins. For this, efficient expression systems are needed. The methylotrophic yeast Pichia pastoris has proven to be an efficient and inexpensive experimental model for high-level expression of many proteins, including ABC transporters. In the present review, we will summarize recent advances on the use of this system for the expression, purification, and functional characterization of P-glycoprotein and two members of the MRP subfamily.  相似文献   

19.
We have developed a new heterologous expression system for monocarboxylate transporters. The system is based on a Saccharomyces cerevisiae pyk1 mae1 jen1 triple-deletion strain that is auxotrophic for pyruvate and deficient in monocarboxylate uptake. Growth of the yeast cells on ethanol medium supplemented with pyruvate or lactate was dependent on the expression of a suitable monocarboxylate transporter. We have used the system to characterize the functional significance of interactions between the rat MCT1 transporter and its ancillary protein CD147. CD147 was shown to improve trafficking of MCT1 to the plasma membrane and its uptake activity. Our results demonstrate a new strategy for the production of properly folded and correctly targeted membrane proteins in a microbial expression system by co-expression of appropriate accessory proteins.  相似文献   

20.
Debottlenecking the 1,3-propanediol pathway by metabolic engineering   总被引:1,自引:0,他引:1  
The history of 1,3-propanediol (1,3-PD) conversion from being a specialty chemical to being a bulk chemical illustrates that the concerted effort of different metabolic engineering approaches brings the most successful results. In order to metabolically tailor the 1,3-PD production pathway multiple strategies have been pursued. Knocking-out genes responsible for by-products formation, intergeneric transfer and overexpression of the genes directly involved in the pathway, manipulation with internal redox balance, introduction of a synthetic flux control point, and modification of the substrate mechanism of transport are some of the strategies applied. The metabolic engineering of the microbial 1,3-PD production exploits both native producers and microorganisms with acquired ability to produce the diol via genetic manipulations. Combination of the appropriate genes from homologous and heterologous hosts is expected to bring a desired objective of production of 1,3-PD cheaply, efficiently and independently from non-renewable resources. The state-of-the-art of the 1,3-PD pathway metabolic engineering is reviewed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号