首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Population increases of primary prey can negatively impact alternate prey populations via demographic and behavioural responses of a shared predator through apparent competition. Seasonal variation in prey selection patterns by predators also can affect secondary and incidental prey by reducing spatial separation. Global warming and landscape changes in Alberta's bitumen sands have resulted in prey enrichment, which is changing the large mammal predator–prey system and causing declines in woodland caribou Rangifer tarandus caribou populations. We assessed seasonal patterns of prey use and spatial selection by wolves Canis lupus in two woodland caribou ranges in northeastern Alberta, Canada, that have undergone prey enrichment following recent white‐tailed deer Odocoileus virginianus invasion. We determined whether risk of predation for caribou (incidental prey) and the proportion of wolf‐caused‐caribou mortalities varied with season. We found that wolves showed seasonal variation in primary prey use, with deer and beaver Castor canadensis being the most common prey items in wolf diet in winter and summer, respectively. These seasonal dietary patterns were reflected in seasonal wolf spatial resource selection and resulted in contrasting spatial relationships between wolves and caribou. During winter, wolf selection for areas used by deer maintained strong spatial separation between wolves and caribou, whereas wolf selection for areas used by beaver in summer increased the overlap with caribou. Changing patterns in wolf resource selection were reflected by caribou mortality patterns, with 76.2% of 42 adult female caribou mortalities occurring in summer. Understanding seasonal patterns of predation following prey enrichment in a multiprey system is essential when assessing the effect of predation on an incidental prey species. Our results support the conclusion that wolves are proximately responsible for woodland caribou population declines throughout much of their range.  相似文献   

2.
Predation of tree seeds can be a major factor structuring plant communities. We present a three year study on tree seed survival on experimental dishes in an old‐growth forest in central Europe in Austria. We addressed species specific, spatial and temporal aspects of post‐dispersal seed predation. Seeds of Norway spruce Picea abies, European beech Fagus sylvatica, and silver fir Abies alba were exposed on dishes in different types of exclosures which allowed access only to specific guilds of seed predators. Removal experiments were carried out in two old‐growth forests and a managed forest (macro‐sites), including micro‐sites with and without cover of ground vegetation. We conducted the experiment in three consecutive years with a mast year of beech and spruce before the first year of the study. The seed removal experiments were combined with live trapping of small mammals being potential seed predators. Our experiments showed a distinctly different impact of different predator guilds on seed survival on the dishes with highest removal rates of seeds from dishes accessible for small mammals. We observed differing preferences of small mammals for the different tree species. Seed survival in different macro‐ and micro‐habitats were highly variable with lower seed survival in old growth forests. In contrast to our assumption, and in contrast to the satiation hypothesis which assumes higher seed survival in and directly after mast years, seed survival was lower in the year following the mast year of beech when a population peak of small mammals occurred and higher in intermast periods when subsequently small mammal population crashed. This suggests a higher importance of sporadic masting shortly after mast years in intermast periods for establishment of forest trees provided that pollination efficiency is high enough in such years. Combined with the high seed mortality observed after the mast year, this corroborates the important role of seed predation for forest dynamics. An altered synchrony or asynchrony of masting of different tree species and changed masting frequencies through climate change may thus lead to strong and non‐linear effects on forest dynamics.  相似文献   

3.
Post‐dispersal predation can be a major source of seed loss in temperate forests. Little is known, however, about how predator‐mediated indirect interactions such as apparent competition alter survival patterns of canopy tree seeds. Understorey plants may enhance tree seed predation by providing sheltered habitat to granivores (non‐trophic pathway). In addition, occurrence of different tree seeds in mixed patches may lead to short‐term apparent competition between seed types, because of the granivores’ foraging response to changes in food patch quality (trophic pathway). We hypothesised that understorey bamboo cover and mixing of seed species in food patches would both increase tree seed predation in a Nothofagus dombeyi?Austrocedrus chilensis forest in northern Patagonia, Argentina. Seed removal experiments were conducted for three consecutive years (2000–2002) differing in overall granivory rates. Seed patch encounter and seed removal rates were consistently higher for the larger and more nutritious Austrocedrus seeds than for the smaller Nothofagus seeds. Seed removal was greater beneath bamboo than in open areas. This apparent competition pathway was stronger in a low‐predation year (2000) than in high‐predation years (2001–2002), suggesting a shift in microhabitat use by rodents. Patch composition had a significant, though weaker, impact on seed survival across study years, whereas seed density per patch enhanced encounter rates but did not influence seed removal. Removal of the less‐preferred Nothofagus seeds increased in the presence of Austrocedrus seeds, but the reciprocal indirect effect was not observed. However, this non‐reciprocal apparent competition between seed species was only significant in the high‐predation years. Our study shows that granivore‐mediated indirect effects can arise through different interaction pathways, affecting seed survival patterns according to the predator's preference for alternative seed types. Moreover, results indicate that the occurrence and relative strength of trophic vs non‐trophic pathways of apparent competition may change under contrasting predation scenarios.  相似文献   

4.
Passive restoration is an effective tool for the maintenance and conservation of biodiversity. Often areas in recovery are immersed in a matrix of land uses, in which the expansion and intensification of human activities exert new visible pressures at their boundaries. The degree of connectivity between these areas and their peripheral lands can be analyzed by mobile link species, organisms that actively move in the landscape by connecting areas to one another through their functional roles. We focus our design on the interface generated by the long‐term restoration area and surrounding grazing lands. We analyze the changes on boundary structure, small mammal abundance, and on the function of native seed dispersal by these vertebrate species. We captured small mammals and determined seed removal of Prosopis flexuosa at three distances inside and outside a fence that delineates passively restored and currently grazed areas. Our results indicate that small rodents find more suitable habitats at the site under restoration than in grazing lands. The restored‐grazing interface shows a decrease in small mammal abundance from the protected area to the grazed lands. From a functional perspective, an increase in small mammal abundance results in an increase in their seed removal activity with implications for seed fate, because the long‐term recovery of vegetation could enhance seed predation on a native tree species.  相似文献   

5.
Aim We estimated the patterns of seed deposition provided by the eyed lizard, Timon lepidus, and evaluated whether these patterns can be generalized across plant species with different traits (fruit and seed size) and spatial distributions. Location Monteagudo Island, Atlantic Islands National Park (north‐western Spain). Methods We radio‐tracked seven lizards for 14 days and estimated their home ranges using fixed kernels. We also geo‐referenced all fruit‐bearing individuals of four plant species dispersed by eyed lizards in the study area (Corema album, Osyris alba, Rubus ulmifolius and Tamus communis), measured the passage time of their seeds through the lizard gut, and estimated seed predation in four habitats (bare sand, grassland, shrub and gorse). Seed dispersal kernels were estimated using a combination of these data and were combined with seed predation probability maps to incorporate post‐dispersal seed fate (‘seed survival kernels’). Results Median seed gut‐passage times were around 52–98 h, with maximum values up to 250 h. Lizards achieved maximum displacement in their home ranges within 24–48 h. Seed predation was high (80–100% of seeds in 2 months), particularly under Corema shrub and gorse. Seed dispersal kernels showed a common pattern, with two areas of preferential seed deposition, but the importance of these varied among plant species. Interspecific differences among dispersal kernels were strongly reduced by post‐dispersal seed predation; hence, seed survival kernels of the different plant species showed high auto‐ and pairwise‐correlations at small distances (< 50 m). As a result, survival to post‐dispersal seed predation increased with dispersal distance for O. alba and T. communis, but not for C. album. Main conclusions Seed dispersal by lizards was determined primarily by the interaction between the dispersers’ home ranges and the position of the fruit‐bearing plants. As a result, seed rain shared a common template, but showed considerable variation among species, determined by their specific spatial context. Seed predation increased the spatial coherence of the seed rain of the different species, but also resulted in contrasting relationships between seed survival and dispersal distance, which may be of importance for the demographic and evolutionary processes of the plants.  相似文献   

6.
Contrary to assumptions of habitat selection theory, field studies frequently detect ‘ecological traps’, where animals prefer habitats conferring lower fitness than available alternatives. Evidence for traps includes cases where birds prefer breeding habitats associated with relatively high nest predation rates despite the importance of nest survival to avian fitness. Because birds select breeding habitat at multiple spatial scales, the processes underlying traps for birds are likely scale‐dependent. We studied a potential ecological trap for a population of yellow warblers Dendroica petechia while paying specific attention to spatial scale. We quantified nest microhabitat preference by comparing nest‐ versus random‐site microhabitat structure and related preferred microhabitat features with nest survival. Over a nine‐year study period and three study sites, we found a consistently negative relationship between preferred microhabitat patches and nest survival rates. Data from experimental nests described a similar relationship, corroborating the apparent positive relationship between preferred microhabitat and nest predation. As do other songbirds, yellow warblers select breeding habitat in at least two steps at two spatial scales; (1) they select territories at a coarser spatial scale and (2) nest microhabitats at a finer scale from within individual territories. By comparing nest versus random sites within territories, we showed that maladaptive nest microhabitat preferences arose during within‐territory nest site selection (step 2). Furthermore, nest predation rates varied at a fine enough scale to provide individual yellow warblers with lower‐predation alternatives to preferred microhabitats. Given these results, tradeoffs between nest survival and other fitness components are unlikely since fitness components other than nest survival are probably more relevant to territory‐scale habitat selection. Instead, exchanges of individuals among populations facing different predation regimes, the recent proliferation of the parasitic brown‐headed cowbird Molothrus ater, and/or anthropogenic changes to riparian vegetation structure are more likely explanations.  相似文献   

7.
Urbanization is an important component of global change. Urbanization affects species interactions, but the evolutionary implications are rarely studied. We investigate the evolutionary consequences of a common pattern: the loss of high trophic‐level species in urban areas. Using a gall‐forming fly, Eurosta solidaginis, and its natural enemies that select for opposite gall sizes, we test for patterns of enemy loss, selection, and local adaptation along five urbanization gradients. Eurosta declined in urban areas, as did predation by birds, which preferentially consume gallmakers that induce large galls. These declines were linked to changes in habitat availability, namely reduced forest cover in urban areas. Conversely, a parasitoid that attacks gallmakers that induce small galls was unaffected by urbanization. Changes in patterns of attack by birds and parasitoids resulted in stronger directional selection, but loss of stabilizing selection in urban areas, a pattern which we suggest may be general. Despite divergent selective regimes, gall size did not very systematically with urbanization, suggesting but not conclusively demonstrating that environmental differences, gene flow, or drift, may have prevented the adaptive divergence of phenotypes. We argue that the evolutionary effects of urbanization will have predictable consequences for patterns of species interactions and natural selection.  相似文献   

8.
Ecological theory predicts that the diffuse risk cues generated by wide‐ranging, active predators should induce prey behavioural responses but not major, population‐ or community‐level consequences. We evaluated the non‐consumptive effects (NCEs) of an active predator, the grey wolf (Canis lupus), by simultaneously tracking wolves and the behaviour, body fat, and pregnancy of elk (Cervus elaphus), their primary prey in the Greater Yellowstone Ecosystem. When wolves approached within 1 km, elk increased their rates of movement, displacement and vigilance. Even in high‐risk areas, however, these encounters occurred only once every 9 days. Ultimately, despite 20‐fold variation in the frequency of encounters between wolves and individual elk, the risk of predation was not associated with elk body fat or pregnancy. Our findings suggest that the ecological consequences of actively hunting large carnivores, such as the wolf, are more likely transmitted by consumptive effects on prey survival than NCEs on prey behaviour.  相似文献   

9.
This study examines the effects of burning and granivory on the reproductive success of the rare plant Amsinckia grandiflora (Boraginaceae). Fire is often used in California grasslands as a means of exotic species control, but the indirect effects these controls have on the reproductive ecology of native plants are rarely assessed. The interaction of fire with granivory of A. grandiflora seeds was examined in California grasslands over five years (1998–2002). In 1998 and 1999, both burned and unburned plots had bird-exclusion (netted) and no-exclusion (open) treatments. Predation rates were high (51–99%) and final predation rates did not differ among treatments. In 2000, granivory rates in the unburned, open plots were lower than in previous years (14%), and rodent trapping yielded only a single animal. Low granivory rates were observed in 2001 for unburned, open plots (47%). In 2001, burned/open plots experienced significantly more granivory (87%) than either burned/netted plots (37%) or unburned/open plots (47%). In 2002, every seed was taken from burned, open plots. Granivory was highly variable, ranging from 4 to 100% per plot over a 3-week period. Nearly all plots were discovered (>10% predation) by granivores in all trials in all years. When data from all treatments were combined, significant differences in granivory rates occurred among years, indicating stronger inter-year effects than within-year effects due to burning or bird exclusion. Fire affects granivory when overall predation rates are low, but when predation levels are high (as they were in 1998 and 1999), fire may not affect granivory occurring within the same year. Models extending seed survivorship through the dry summer indicate that most seeds are eaten, even when granivory rates are low.  相似文献   

10.
For migrant birds, which habitats are suitable during the non‐breeding season influences habitat availability, population resilience to habitat loss, and ultimately survival. Consequently, habitat preferences during winter and whether habitat segregation according to age and sex occurs directly influences migration ecology, survival and breeding success. We tested the fine‐scale habitat preferences of a declining Palearctic migrant, the whinchat Saxicola rubetra, on its wintering grounds in west Africa. We explored the influence of habitat at the territory‐scale and whether dominance‐based habitat occupancy occurs by describing the variation in habitat characteristics across wintering territories, the degree of habitat change within territories held throughout winter, and whether habitat characteristics influenced territory size and space‐use within territories or differed with age and sex. Habitat characteristics varied substantially across territories and birds maintained the same territories even though habitat changed significantly throughout winter. We found no evidence of dominance‐based habitat occupancy; instead, territories were smaller if they contained more perching shrubs or maize crops, and areas with more perching shrubs were used more often within territories, likely because perches are important for foraging and territory defence. Our findings suggest that whinchats have non‐specialised habitat requirements within their wintering habitat of open savannah and farmland, and respond to habitat variation by adjusting territory size and space‐use within their territories instead of competing with conspecifics. Whinchats show a tolerance for human‐modified habitats and results support previous findings that some crop types may provide high‐quality wintering habitat by increasing perch density and foraging opportunities. By having non‐specialised requirements within broad winter habitat types, migrants are likely to be flexible to changing wintering conditions in Africa, both within and across winters, so possibly engendering some resilience to the rapid anthropogenic habitat degradation occurring throughout their wintering range.  相似文献   

11.
Large‐seeded plants are especially vulnerable to the loss of seed dispersers in small forest fragments. The palm Attalea humilis goes against this trend by reaching high abundances in small remnants. Productivity, seed dispersal and seed predation of A. humilis were investigated in two large (2400 and 3500 ha) and three small (19, 26 and 57 ha) Atlantic Forest fragments in southeastern Brazil. Palms in the small fragments produced more female inflorescences, resulting in a higher fruit production in these places. Seed dispersal rates were higher in the large fragments, where scatter hoarding was more frequent. Scolytine beetles were the main seed predators and damaged a larger number of seeds in small fragments, but predation by rodents and bruchine beetles was low irrespective of fragment size. As scolytines do not necessarily kill the seeds, low predation by bruchines and rodents, together with its own high productivity, allow A. humilis to be more abundant in small fragments despite the scarcity of its main dispersers. This increased abundance, by its turn, can increase competitive interactions between A. humilis and other plants in small fragments. Thus, abundance patterns of A. humilis are a good example of fragmentation affecting the balance of ecological interactions in a complex way, emphasizing the role of preserving ecological processes for conserving biodiversity in fragmented tropical landscapes. Abstract in Portuguese is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

12.
13.
Post‐dispersal seed predation is a crucial phenomenon for plant recruitment, and its incidence can be hypothesized to increase in ecologically and geographically marginal populations of threatened species, such as yew (Taxus baccata). Here we examine the among‐ and within‐population patterns of seed consumption by rodents and evaluate to what extent they are linked to marginality in Mediterranean low‐density yew stands. Among populations we tested: (i) whether the rates of seed predation found in our marginal sites were consistently higher than in populations from core regions; (ii) within populations we evaluated whether rodents preferred microhabitats with greater seed availability (beneath female yew trees) or with lower predation risk (shrubs) in two seeding seasons (fall–winter 2005 and 2006). Predation rates were extremely high (92.5%) and they were well above values reported for core populations (65.4%), to the extent that rodents almost completely depleted the experimental seeds in all populations and years. Our expectation of lower predation rates with decreasing vegetation cover was also confirmed for all years and populations, suggesting that rodent foraging was risk‐sensitive. This microhabitat effect outweighed the effect of seed availability under female yew trees, implying also that rodents selectively consumed the most valuable seeds in terms of their recruitment prospects. Overall, our results suggest that the mechanisms underlying seed depletion and its demographic consequences are linked to the effects of reduced yew performance in ecologically marginal habitats.  相似文献   

14.
Anti‐predator behavior can affect prey growth, reproduction, survival, and generate emergent effects in food webs. Small mammals often lower the cost of predation by altering their behavior in response to shrubs, but the importance of other microhabitat features, such as downed woody debris, for anti‐predator behavior is unknown. We used giving‐up densities to quantify the degree to which downed woody debris alters perceived predation risk by small mammals in southeastern pine forests. We placed 14 foraging trays next to large downed woody debris, shrubs, and in open areas for 12 consecutive nights. Moon illumination, a common indicator of predation risk, led to a similar reduction in small mammal foraging in all three microhabitats (open, downed woody debris, and shrub). Small mammals perceived open microhabitats as riskier than shrub microhabitats, with downed woody debris habitats perceived as being of intermediate risk between shrub and open microhabitats. Despite the presumed benefits of the protective cover of downed woody debris, small mammals may perceive downed woody debris as a relatively risky foraging site in southeastern pine forests where the high diversity and abundance of rodent‐eating snakes may provide a primary predatory threat.  相似文献   

15.
Animals vary greatly in their tendency to consume large meals. Yet, whether or how meal size influences fitness in wild populations is infrequently considered. Using a predator exclusion, mark–recapture experiment, we estimated selection on the amount of food accepted during an ad libitum feeding bout (hereafter termed ‘satiation threshold’) in the wolf spider Schizocosa ocreata. Individually marked, size‐matched females of known satiation threshold were assigned to predator exclusion and predator inclusion treatments and tracked for a 40‐day period. We also estimated the narrow‐sense heritability of satiation threshold using dam‐on‐female‐offspring regression. In the absence of predation, high satiation threshold was positively associated with larger and faster egg case production. However, these selective advantages were lost when predators were present. We estimated the heritability of satiation threshold to be 0.56. Taken together, our results suggest that satiation threshold can respond to selection and begets a life history trade‐off in this system: high satiation threshold individuals tend to produce larger egg cases but also suffer increased susceptibility to predation.  相似文献   

16.
Intra and interspecific variation in frugivore behaviour can have important consequences for seed dispersal outcomes. However, most information comes from among‐species comparisons, and within‐species variation is relatively poorly understood. We examined how large intraspecific differences in the behaviour of a native disperser, blackbuck antelope Antilope cervicapra, influence dispersal of a woody invasive, Prosopis juliflora, in a grassland ecosystem. Blackbuck disperse P. juliflora seeds through their dung. In lekking blackbuck populations, males defend clustered or dispersed mating territories. Territorial male movement is restricted, and within their territories males defecate on dung‐piles. In contrast, mixed‐sex herds range over large areas and do not create dung‐piles. We expected territorial males to shape seed dispersal patterns, and seed deposition and seedling recruitment to be spatially localized. Territorial males had a disproportionately large influence on seed dispersal. Adult males removed twice as much fruit as females, and seed arrival was disproportionately high on territories. Also, because lek‐territories are clustered, seed arrival was spatially highly concentrated. Seedling recruitment was also substantially higher on territories compared with random sites, indicating that the local concentration of seeds created by territorial males continued into high local recruitment of seedlings. Territorial male behaviour may, thus, result in a distinct spatial pattern of invasion of grasslands by the woody P. juliflora. An ex situ experiment showed no beneficial effect of dung and a negative effect of light on seed germination. We conclude that large intraspecific behavioural differences within frugivore populations can result in significant variation in their effectiveness as seed dispersers. Mating strategies in a disperser could shape seed dispersal, seedling recruitment and potentially plant distribution patterns. These mating strategies may aid in the spread of invasives, such as P. juliflora, which could, in turn, negatively influence the behaviour and ecology of native dispersers.  相似文献   

17.
Winter is becoming warmer and shorter across the northern hemisphere, and reductions in snow depth can decrease tree seedling survival by exposing seedlings to harmful microclimates. Similarly, herbivory by small mammals can also limit the survival and distribution of woody plants, but it is unclear whether winter climate change will alter small‐mammal herbivory. Although small‐scale experiments show that snow removal can either increase or decrease both soil temperatures and herbivory, we currently lack snow‐removal experiments replicated across large spatial scales that are needed to understand the effect of reduced snow. To examine how winter herbivory and snow conditions influence seedling dynamics, we transplanted Acer saccharum and Tsuga canadensis seedlings across a 180 km latitudinal gradient in northern Wisconsin, where snow depth varied seven‐fold among sites. Seedlings were transplanted into one of two herbivory treatments (small‐mammal exclosure, small‐mammal access) and one of two late‐winter snow removal treatments (snow removed, snow unmanipulated). Snow removal increased soil freeze‐thaw frequency and cumulative growing degree‐days (GDD), but the magnitude of these effects depended on forest canopy composition. Acer saccharum survival decreased where snow was removed, but only at sites without conifers. Excluding small mammals increased A. saccharum survival at sites where the small‐mammal herbivore Myodes gapperi was present. Excluding small mammals also increased T. canadensis survival in plots with < 5 cm snow. Because variation in canopy composition and M. gapperi presence were important predictors of seedling survival across the snow‐depth gradient, these results reveal complexity in the ability to accurately predict patterns of winter seedling survival over large spatial scales. Global change scenarios that project future patterns of seedling recruitment may benefit from explicitly considering interactions between snow conditions and small‐mammal winter herbivory.  相似文献   

18.
The invasive erect prickly pear cactus (Opuntia stricta) has reduced rangeland quality and altered plant communities throughout much of the globe. In central Kenya's Laikipia County, olive baboons (Papio anubis) frequently consume O. stricta fruits and subsequently disperse the seeds via defecation. Animal‐mediated seed dispersal can increase germination and subsequent survival of plants. However, consumption of seeds (seed predation) by rodents may offset the potential benefits of seed dispersal for cactus establishment by reducing the number of viable seeds. We investigated foraging preferences of a common and widely distributed small mammal—the fringe‐tailed gerbil (Gerbilliscus robustus), between O. stricta seeds deposited in baboon faeces versus control O. stricta seeds. In addition to providing evidence of seed predation on O. stricta by G. robustus, our data show that seed removal was higher (shorter time to use) for seeds within faeces than for control seeds. G. robustus clearly prefers seeds within faeces compared to control seeds. These results suggest that high abundances of rodents may limit successful establishment of O. stricta seeds, possibly disrupting seed dispersal via endozoochory by baboons.  相似文献   

19.
The post‐dispersal removal or predation of seeds of native tree species was investigated in Queensland, Australia, at degraded habitats and rainforest restoration sites where direct seeding might be used to facilitate tree regeneration (old fields or open habitats, lantana thicket, rainforest edge, and 5‐ and 10‐year‐old restoration plantings). Seed removal/predation was assessed in relation to tree seed weight and canopy density of the habitats during the wet season period. Results indicated that seed removal/predation imposes limitations on seed availability, particularly for small seeded species. In most situations, larger seeds were less removed/predated, most likely due to the more limited range of large seed consumers. The use of large, hard‐coated seeds may potentially reduce seed loss in open situations (from both seed removal and desiccation), unless large seed consumers frequent the site. Canopy cover exerted an influence on seed removal/predation, though trends varied in relation to site and the time of season. Broadcast sowing of seed under planted tree canopies at the more advanced stages of closure may in some areas result in higher seed removal/predation. Likewise, seeding in areas dominated by woody weeds may result in high seed losses to consumers such as rodents. Results suggested that undertaking direct seeding to coincide with the maximal period of fruit production may in some situations be beneficial to minimize seed loss. Overall, site context, canopy cover, and species selection appear to be important considerations when aiming to reduce loss of seeds to animal seed consumers in restoration work.  相似文献   

20.
Human‐induced changes to fire regimes result in smaller, more patchy fires in many peri‐urban areas, with a concomitant increase in potential edge effects. In sclerophyll vegetation, many structurally dominant serotinous plants rely on the immediate post‐fire environment for recruitment. However, there is little information about how fire attributes affect seed predation or recruitment for these species. We examined the influence of distance to unburnt vegetation on post‐dispersal seed predation for five serotinous species from sclerophyll vegetation in the Sydney region, south‐eastern Australia; Banksia serrata L.f., Banksia spinulosa Sm. var. spinulosa, Hakea gibbosa (Sm.) Cav., Hakea teretifolia (Salisb.) Britten (all Proteaceae) and Allocasuarina distyla (Vent.) L. Johnson (Casuarinaceae). We used cafeteria trials and differential exclusion of vertebrates and invertebrates to test whether rates of seed removal for these five species differed among (i) unburnt, (ii) burnt‐edge (approx. 10 m from unburnt vegetation) and (iii) burnt‐interior (approx. 100 m from unburnt vegetation) locations. When all animals had access to seeds, seeds were removed at lower rates from burnt‐interior areas than from other locations. Vertebrates (small mammals) showed this pattern markedly the first time the experiment was run, but in a repeat trial this effect disappeared. Rate of seed removal by invertebrates differed among plant species but we did not detect any such differences for removal by vertebrates. Overall rates of seed removal also differed significantly between the two fires studied. Our results indicate that small mammal seed predation can be substantial for large‐seeded serotinous shrubs, and that differences in the perimeter: area ratio, severity or size of a fire are likely to affect seed predation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号