首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Apomicts tend to have larger geographical distributional ranges and to occur in ecologically more extreme environments than their sexual progenitors. However, the expression of apomixis is typically linked to polyploidy. Thus, it is a priori not clear whether intrinsic effects related to the change in the reproductive mode or rather in the ploidy drive ecological differentiation. We used sympatric sexual and apomictic populations of Potentilla puberula to test for ecological differentiation. To distinguish the effects of reproductive mode and ploidy on the ecology of cytotypes, we compared the niches (a) of sexuals (tetraploids) and autopolyploid apomicts (penta‐, hepta‐, and octoploids) and (b) of the three apomictic cytotypes. We based comparisons on a ploidy screen of 238 populations along a latitudinal transect through the Eastern European Alps and associated bioclimatic, and soil and topographic data. Sexual tetraploids preferred primary habitats at drier, steeper, more south‐oriented slopes, while apomicts mostly occurred in human‐made habitats with higher water availability. Contrariwise, we found no or only marginal ecological differentiation among the apomictic higher ploids. Based on the pronounced ecological differences found between sexuals and apomicts, in addition to the lack of niche differentiation among cytotypes of the same reproductive mode, we conclude that reproductive mode rather than ploidy is the main driver of the observed differences. Moreover, we compared our system with others from the literature, to stress the importance of identifying alternative confounding effects (such as hybrid origin). Finally, we underline the relevance of studying ecological parthenogenesis in sympatry, to minimize the effects of differential migration abilities.  相似文献   

2.
Determining the relative contribution of population genetic processes to the distribution of natural variation is a major goal of evolutionary biology. Here, we take advantage of variation in mating system to test the hypothesis that local adaptation is constrained by asexual reproduction. We explored patterns of variation in ecological traits and genome‐wide molecular markers in Boechera spatifolia (Brassicaceae), a species that contains both apomictic (asexual) and sexual individuals. Using a combination of quantitative genetics, neutral genetic (SSR) and genome‐wide single nucleotide polymorphism, we assessed the hypothesis that asexual lineages should have reduced signatures of adaptation relative to sexual conspecifics. All three measures (traits, SSRs, SNPs) demonstrated that apomicts are genetically distinct from sexuals, regardless of population location. Additionally, phylogenetic clustering revealed that the apomictic group shared a single common ancestor. Across the landscape, sexual genome‐wide SNP variation was strongly associated with latitude (r2 > 0.9), indicating that sexual populations have differentiated across an environmental gradient. Furthermore, flowering time and growth rate, as assessed in a common garden, strongly covary with the elevation and latitude of the source population. Despite a wide geographic distribution that largely overlaps with sexual populations, there was little evidence for differentiation in molecular markers or quantitative characters among apomictic populations. Combined, these data indicated that, in contrast to asexual populations, sexual populations show evidence of local adaptation.  相似文献   

3.
Negative reproductive interactions are likely to be strongest between close relatives and may be important in limiting local coexistence. In plants, interspecific pollen flow is common between co‐occurring close relatives and may serve as the key mechanism of reproductive interference. Agamic complexes, systems in which some populations reproduce through asexual seeds (apomixis), while others reproduce sexually, provide an opportunity to examine effects of reproductive interference in limiting coexistence. Apomictic populations experience little or no reproductive interference, because apomictic ovules cannot receive pollen from nearby sexuals. Oppositely, apomicts produce some viable pollen and can exert reproductive interference on sexuals by siring hybrids. In the Crepis agamic complex, sexuals co‐occur less often with other members of the complex, but apomicts appear to freely co‐occur with one another. We identified a mixed population and conducted a crossing experiment between sexual diploid C. atribarba and apomictic polyploid C. barbigera using pollen from sexual diploids and apomictic polyploids. Seed set was high for all treatments, and as predicted, diploid–diploid crosses produced all diploid offspring. Diploid–polyploid crosses, however, produced mainly polyploidy offspring, suggesting that non‐diploid hybrids can be formed when the two taxa meet. Furthermore, a small proportion of seeds produced in open‐pollinated flowers was also polyploid, indicating that polyploid hybrids are produced under natural conditions. Our results provide evidence for asymmetric reproductive interference, with pollen from polyploid apomicts contributing to reduce the recruitment of sexual diploids in subsequent generations. Existing models suggest that these mixed sexual–asexual populations are likely to be transient, eventually leading to eradication of sexual individuals from the population.  相似文献   

4.
Taraxacum officinale L. (dandelion) is a vigorous weed in Europe with diploid sexual populations in the southern regions and partially overlapping populations of diploid sexuals and triploid or tetraploid apomicts in the central and northern regions. Previous studies have demonstrated unexpectedly high levels of genetic variation in the apomictic populations, suggesting the occurrence of genetic segregation in the apomicts and (or) hybridization between sexual and apomictic individuals. In this study we analysed meiosis in both sexual diploid and apomictic triploid plants to find mechanisms that could account for the high levels of genetic variation in the apomicts. Microscopic study of microsporocytes in the triploid apomicts revealed that the levels of chromosome pairing and chiasma formation at meiotic prophase I were lower than in that of the sexual diploids, but still sufficient to assume recombination between the homologues. Nomarski DIC (differential interference contrast) microscopy of optically cleared megasporocytes in the apomicts demonstrated incidental formation of tetrads, which suggests that hybridization can occur in triploid apomicts.  相似文献   

5.
Apomixis evolves from a sexual background and usually is linked to polyploidization. Pseudogamous gametophytic apomicts, which require a fertilization to initiate seed development, of various ploidy levels frequently co‐occur with their lower‐ploid sexual ancestors, but the stability of such mixed populations is affected by reproductive interferences mediated by cross‐pollination. Thereby, reproductive success of crosses depends on the difference in ploidy levels of mating partners, that is, on tolerance of deviation from the balanced ratio of maternal versus paternal genomes. Quality of pollen can further affect reproductive success in intercytotype pollinations. Cross‐fertilization, however, can be avoided by selfing which may be induced upon pollination with mixtures of self‐ and cross‐pollen (i.e., mentor effects). We tested for reproductive compatibility of naturally co‐occurring tetraploid sexuals and penta‐ to octoploid apomicts in the rosaceous species Potentilla puberula by means of controlled crosses. We estimated the role of selfing as a crossing barrier and effects of self‐ and cross‐pollen quality as well as maternal: paternal genomic ratios in the endosperm on reproductive success. Cross‐fertilization of sexuals by apomicts was not blocked by selfing, and seed set was reduced in hetero‐ compared to homoploid crosses. Thereby, seed set was negatively related to deviations from balanced parental genomic ratios in the endosperm. In contrast, seed set in the apomictic cytotypes was not reduced in hetero‐ compared to homoploid crosses. Thus, apomictic cytotypes either avoided intercytotype cross‐fertilization through selfing, tolerated intercytotype cross‐fertilizations without negative effects on reproductive success, or even benefitted from higher pollen quality in intercytotype pollinations. Our experiment provides evidence for asymmetric reproductive interference, in favor of the apomicts, with significantly reduced seed set of sexuals in cytologically mixed populations, whereas seed set in apomicts was not affected. Incompleteness of crossing barriers further indicated at least partial losses of a parental genomic endosperm balance requirement.  相似文献   

6.
The ecological and evolutionary opportunities of apomixis in the short and the long term are considered, based on two closely related apomictic genera: Taraxacum (dandelion) and Chondrilla (skeleton weed). In both genera apomicts have a wider geographical distribution than sexuals, illustrating the short-term ecological success of apomixis. Allozymes and DNA markers indicate that apomictic populations are highly polyclonal. In Taraxacum, clonal diversity can be generated by rare hybridization between sexuals and apomicts, the latter acting as pollen donors. Less extensive clonal diversity is generated by mutations within clonal lineages. Clonal diversity may be maintained by frequency-dependent selection, caused by biological interactions (e.g. competitors and pathogens). Some clones are geographically widespread and probably represent phenotypically plastic 'general-purpose genotypes'. The long-term evolutionary success of apomictic clones may be limited by lack of adaptive potential and the accumulation of deleterious mutations. Although apomictic clones may be considered as 'evolutionary dead ends', the genes controlling apomixis can escape from degeneration and extinction via pollen in crosses between sexuals and apomicts. In this way, apomixis genes are transferred to a new genetic background, potentially adaptive and cleansed from linked deleterious mutations. Consequently, apomixis genes can be much older than the clones they are currently contained in. The close phylogenetic relationship between Taraxacum and Chondrilla and the similarity of their apomixis mechanisms suggest that apomixis in these two genera could be of common ancestry.  相似文献   

7.
The fact that apomictic taxa typically occupy a wider range of environments than their sexual relatives has generated the hypothesis that apomicts are more likely to possess “general-purpose genotypes,” i.e., genotypes whose performance is relatively insensitive to changes in environmental conditions. This hypothesis was tested by cloning sexual and apomictic females of Antennaria parvifolia (Asteraceae) and growing each genotype in six growth-chamber environments varying in temperature and moisture levels. A joint regression analysis revealed that the survival of apomictic genotypes was significantly less sensitive to environmental conditions than that of sexual genotypes but demonstrated no differences with regard to flowering or biomass. However, the coefficient of variation in biomass across the six environments was significantly lower for apomicts than for sexuals, and the geometric mean of survival over the six environments was significantly higher for apomicts. Apomicts significantly exceeded sexuals in mean survival, mean flower-head production, and mean biomass. These results support the hypothesis that apomictic genotypes are more “general-purpose” than sexuals, and increase the difficulty of explaining the persistence of sexual reproduction in A. parvifolia.  相似文献   

8.
Because of their higher evolvability, sexuals may have an advantage relative to asexual organisms in a competitive environment with many biotic interactions. We tested this idea using sexual and apomictic Taraxacum , dandelions. Taraxacum seedlings were grown without competition and in different competing combinations in a greenhouse. Apomicts had more and longer leaves than sexuals, but the same dry weight at harvest as sexuals. Competition reduced growth to the same extent in both apomicts and sexuals. Therefore, we conclude that sexual dandelions are no superior competitors relative to apomicts. In Taraxacum , new apomictic lineages spin off from the sexual population with some unknown frequency. This may enable the apomictic community to keep up with the sexual population.  相似文献   

9.
Abstract: The mode of reproduction, sexual or asexual, will influence the way populations respond to selective pressures. This can cause genetic and ecological divergence between sexual and asexual forms of the same species. Here we examine differences in morphology and phenology between sexual and apomictic types of dandelion, Taraxacum officinale. Sexual and apomictic dandelions were collected from a mixed population on the banks of the river Rhine, The Netherlands. Clonal copies of both sexual and apomictic genotypes were planted in an experimental garden under two light levels. Sexual plants flowered four days later on average than apomicts, but the number of capitula was the same. Apomicts had longer leaves and were heavier than sexual plants, especially under shaded conditions. In apomicts plasticity for leaf length and height was larger than in sexuals, but for most other measured traits no differences in plasticity were observed. Trait values of apomicts were within the same range as those of sexual plants.  相似文献   

10.
Apomictic plants often produce pollen that can function in crosses with related sexuals. Moreover, facultative apomicts can produce some sexual offspring. In dandelions, Taraxacum, a sexual-asexual cycle between diploid sexuals and triploid apomicts, has been described, based on experimental crosses and population genetic studies. Little is known about the actual hybridization processes in nature. We therefore studied the sexual-asexual cycle in a mixed dandelion population in the Netherlands. In this population, the frequencies of sexual diploids and triploids were 0.31 and 0.68, respectively. In addition, less than 1% tetraploids were detected. Diploids were strict sexuals, triploids were obligate apomicts, but tetraploids were most often only partly apomictic, lacking certain elements of apomixis. Tetraploid seed fertility in the field was significantly lower than that of apomictic triploids. Field-pollinated sexual diploids produced on average less than 2% polyploid offspring, implying that the effect of hybridization in the 2x-3x cycle in Taraxacum will be low. Until now, 2x-3x crosses were assumed to be the main pathway of new formation of triploid apomicts in the sexual-asexual cycle in Taraxacum. However, tetraploid pollen donors produced 28 times more triploid offspring in experimental crosses with diploid sexuals than triploid pollen donors. Rare tetraploids may therefore act as an important bridge in the formation of new triploid apomicts.  相似文献   

11.
A species’ mode of reproduction, sexual or asexual, will affect its ecology and evolution. In many species, asexuality is related to polyploidy. In Taraxacum, apomicts are triploid, and sexuals are diploid. To disentangle the effects of ploidy level and reproductive mode on life‐history traits, we compared established apomictic Taraxacum genotypes with newly synthesized apomictic genotypes, obtained from diploid–triploid crosses. Diploid–triploid crossing is probably the way that most apomictic lineages originate. New genotypes had on average a much lower seed set than established genotypes. Established genotypes differed on average from new genotypes, in particular under shaded conditions: the established genotypes had longer leaves and flowered later. The differences between new and established triploids resembled the differences that have been found between sexual diploids and established apomictic triploids. We conclude that ploidy differences alone are not directly responsible for observed differences between sexual diploid and apomictic triploid dandelions.  相似文献   

12.

Background and Aims

Intraspecific reproductive differentiation into sexual and apomictic cytotypes of differing ploidy is a common phenomenon. However, mechanisms enabling the maintenance of both reproductive modes and integrity of cytotypes in sympatry are as yet poorly understood. This study examined the association of sexual and apomictic seed formation with ploidy as well as gene flow towards sexuals within populations of purely polyploid Potentilla puberula.

Methods

The study is based on 22 populations representing various combinations of five polyploid cytotypes (tetraploid–octoploid) from East Tyrol, Austria. Embryo ploidy and the endosperm/embryo ploidy ratio obtained by a flow cytometric seed screen were used to infer reproductive modes of seed formation and to calculate the male and female genomic contributions to the embryo and endosperm. Self-incompatibility (SI) patterns were assessed and a new indirect approach was used to test for the occurrence of intercytotype matings based on the variation in the male genomic contribution to sexually derived embryos on the level of developed seed.

Key Results

Tetraploids formed seeds almost exclusively via sexual reproduction, whereas penta- to octoploids were preferentially apomictic. Non-random distribution of reproductive modes within maternal plants further revealed a tendency to separate the sexual from the apomictic mode among individuals. Self-incompatibility of sexuals indicated functionality of the gametophytic SI system despite tetraploidy of the nuclear genome. We found no indication for significant cross-fertilization of tetraploids by the high polyploids.

Conclusions

The study revealed a rare example of intraspecific differentiation into sexual and apomictic cytotypes at the polyploid level. The integrity of the sexual tetraploids was maintained due to reproductive isolation from the apomictic higher polyploids. Functionality of the gametophytic SI system suggested that the tetraploids are functional diploids.  相似文献   

13.
Apomixis, asexual reproduction through seeds, occurs in over 40 plant families. This widespread phenomenon can lead to the fixation of successful genotypes, resulting in a fitness advantage. On the other hand, apomicts are expected to lose their fitness advantage if the environment changes because of their limited evolutionary potential, which is due to low genetic variability and the potential accumulation of deleterious somatic mutations. Nonetheless, some apomicts have been extremely successful, for example certain apomictic accessions of Hieracium pilosella L. from New Zealand, where the plant is invasive. Here, we investigate whether the success of these apomictic accessions could be due to a fitness advantage by comparing the vegetative competitiveness of apomictic H. pilosella from New Zealand with sexual accessions of H. pilosella from Europe. Sexual and apomictic plants were grown either (A) alone (no competition), (B) in competition with the other type (intra-specific competition), (C) in competition with the grass Bromus erectus (inter-specific competition), and (D) in competition with the other type and the grass B. erectus (intra- and inter-specific competition). To distinguish effects of apomixis and the region of origin, different H. pilosella lineages were compared. Furthermore, experiments were carried out to investigate effects of the ploidy level. We show that sexual plants are better inter-specific competitors than apomicts in terms of vegetative reproduction (number of stolons) and vegetative spread (stolon length), while apomicts do better than sexuals in intra-specific competition. The magnitude of the effect was in some cases dependent on the ploidy levels of the plants. Furthermore, apomicts always produced more stolons than sexuals, suggesting potential displacement of sexuals by apomicts where they co-occur.  相似文献   

14.

Background and Aims

Asexual organisms are more widespread in previously glaciated areas than their sexual relatives (‘geographical parthenogenesis’). In plants, this pattern is probably dependent on reproductive isolation and stability of cytotypes within their respective distribution areas. Both partial apomixis and introgressive hybridization potentially destabilize the spatial separation of sexual and apomictic populations. The wide distribution of apomicts may be further enhanced by uniparental reproduction which is advantageous for colonization. These factors are studied in the alpine species Ranunculus kuepferi.

Methods

Geographical distribution, diversity and mode of reproduction of cytotypes were assessed using flow cytometry and flow cytometric seed screening on samples from 59 natural populations of Ranunculus kuepferi. Seed set of cytotypes was compared in the wild.

Key Results

Diploid sexuals are confined to the south-western parts of the Alps, while tetraploid apomicts dominate in previously glaciated and in geographically isolated areas despite a significantly lower fertility. Other cytotypes (3x, 5x and 6x) occur mainly in the sympatric zone, but without establishing populations. The tetraploids are predominantly apomictic, but also show a partial apomixis via an uncoupling of apomeiosis and parthenogenesis in the seed material. Both pseudogamy and autonomous endosperm formation are observed which may enhance uniparental reproduction.

Conclusions

Diploids occupy a glacial relic area and resist introgression of apomixis, probably because of a significantly higher seed set. Among the polyploids, only apomictic tetraploids form stable populations; the other cytotypes arising from partial apomixis fail to establish, probably because of minority cytotype disadvantages. Tetraploid apomicts colonize previously devastated and also distant areas via long-distance dispersal, confirming Baker''s law of an advantage of uniparental reproduction. It is concluded that stability of cytotypes and of modes of reproduction are important factors for establishing a pattern of geographical parthenogenesis.  相似文献   

15.
Seed samples of 32 species (obligate and facultative sexuals and apomicts of monocots and dicots) were investigated by flow cytometry to reveal the pathway of reproduction. Ten different pathways of seed formation could be reconstructed considering whether the female and/or male gametes were reduced or unreduced, the embryos arose via the zygotic or parthenogenetic route and the endosperm via the pseudogamous or autonomous route. The screen is suited to select sporophytic or gametophytic mutants in sexual species, to identify pure sexual or obligate apomictic genotypes from facultative apomictic species, and to analyze the inheritance of the individual reproductive processes. Corresponding unique results are presented for Arabidopsis, Arabis, Hypericum and Poa. The screen of mature seeds by flow cytometry yielded more information about the reproductive behavior of individual plants than any other available test, and is very useful both in basic research and plant breeding.  相似文献   

16.
The capacity to generate variation in ploidy and reproductive mode was compared in facultatively apomictic versus sexual maternal plants that coexist in two model populations. The population structure was studied in polyploid hybrid swarms comprised of Hieracium pilosella (usually sexual, less commonly apomictic), H. bauhini (apomictic), and their hybrids (sexual, apomictic, or sterile). Relationships among established biotypes were proposed on the basis of their DNA ploidy level/chromosome number, reproductive mode and morphology. Isozyme phenotypes and chloroplast DNA haplotypes were assayed in the population that was richer in hybrids. The reproductive origin of seed progeny was identified in both sexual and apomictic mothers, using alternative methods: the karyological, morphological and reproductive characters of the cultivated progeny were compared with those of respective mothers, or flow cytometric seed screening was used. In both populations, the progeny of sexual mothers mainly retained a rather narrow range of ploidy level/chromosome number, while the progeny of facultatively apomictic mothers was more variable. The high-polyploid hybrids, which had arisen from the fertilization of unreduced egg cells of apomicts, mainly produced aberrant non-maternal progeny (either sexually and/or via haploid parthenogenesis). Apparently, such versatile reproduction resulted in genomic instability of the recently formed high-polyploid hybrids. While the progeny produced by both true apomictic and sexual mothers mostly maintained the maternal reproductive mode, the progeny of those ‘versatile’ mothers was mainly sexual. Herein, we argue that polyploid facultative apomicts can considerably increase population diversity.  相似文献   

17.

Premise

Apomictic plants (reproducing asexually through seed) often have larger ranges and occur at higher latitudes than closely related sexuals, a pattern known as geographical parthenogenesis (GP). Explanations for GP include differences in colonizing ability due to reproductive assurance and direct/indirect effects of polyploidy (most apomicts are polyploid) on ecological tolerances. While life history traits associated with dispersal and establishment also contribute to the potential for range expansion, few studies compare these traits in related apomicts and sexuals.

Methods

We investigated differences in early life history traits between diploid-sexual and polyploid-apomictic Townsendia hookeri (Asteraceae), which displays a classic pattern of GP. Using lab and greenhouse experiments, we measured seed dispersal traits, germination success, and seedling size and survival in sexual and apomictic populations from across the range of the species.

Results

While theory predicts that trade-offs between dispersal and establishment traits should be common, this was largely not the case in T. hookeri. Apomictic seeds had both lower terminal velocity (staying aloft longer when dropped) and higher germination success than sexual seeds. While there were no differences in seedling size between reproductive types, apomicts did, however, have slightly lower seedling survival than sexuals.

Conclusions

These differences in early life history traits, combined with reproductive assurance conferred by apomixis, suggest that apomicts achieve a greater range through advantages in their ability to both spread and establish.
  相似文献   

18.
  • Although reproductive assurance has been suggested to be one of the most important factors shaping the differential distributional patterns between sexuals and asexuals (geographic parthenogenesis), it has only rarely been studied in natural populations of vascular plants with autonomous apomixis. Moreover, there are almost no data concerning the putative relationship between the level of apomictic versus sexual plant reproduction on one hand, and reproductive assurance on the other.
  • We assessed the level of sexual versus apomictic reproduction in diploid and triploid plants of Hieracium alpinum across its distributional range using flow cytometric analyses of seeds, and compared the level of potential and realized seed set, i.e. reproductive assurance, between the two cytotypes under field and greenhouse conditions.
  • Flow cytometric screening of embryos and endosperms of more than 4,100 seeds showed that diploids produced solely diploid progeny sexually, while triploids produced triploid progeny by obligate apomixis. Potential fruit set was much the same in diploids and triploids from the field and the greenhouse experiment. While in the pollination‐limited environment in the greenhouse apomictic triploids had considerably higher realized fruit set than sexual diploids, there was no significant difference between cytotypes under natural conditions. In addition, sexuals varied to a significantly larger extent in realized fruit set than asexuals under both natural and greenhouse conditions.
  • Our results indicate that triploid plants reproduce by obligate apomixis, assuring more stable and predictable fruit reproduction when compared to sexual diploids. This advantage could provide apomictic triploids with a superior colonisation ability, mirrored in a strong geographic parthenogenesis pattern observed in this species.
  相似文献   

19.
The genus Taraxacum is a widely dispersed, ecologically variable taxon of some 2000 sexual and apomictic (agarnospermous) species. Data from numerous studies are used to examine the influences sexuality and apomixis have had on its evolution, geographical distribution and ecological diversification. A new explanation is given of the geographical distribution of sexual and apomictic forms, and the role of polyploidy in buffering apomicts against the effects of an accumulation of deleterious mutations is examined.  相似文献   

20.
In asexual (apomictic) plants, the absence of meiosis and sex is expected to lead to mutation accumulation. To compare mutation accumulation in the transcribed genomic regions of sexual and apomictic plants, we performed a double-validated analysis of copy number variation (CNV) on 10 biological replicates each of diploid sexual and diploid apomictic Boechera, using a high-density (>700 K) custom microarray. The Boechera genome demonstrated higher levels of depleted CNV, compared with enriched CNV, irrespective of reproductive mode. Genome-wide patterns of CNV revealed four divergent lineages, three of which contain both sexual and apomictic genotypes. Hence genome-wide CNV reflects at least three independent origins (i.e., expression) of apomixis from different sexual genetic backgrounds. CNV distributions for different families of transposable elements were lineage specific, and the enrichment of LINE/L1 and long term repeat/Copia elements in lineage 3 apomicts is consistent with sex and meiosis being mechanisms for purging genomic parasites. We hypothesize that significant overrepresentation of specific gene ontology classes (e.g., pollen–pistil interaction) in apomicts implies that gene enrichment could be an adaptive mechanism for genome stability in diploid apomicts by providing a polyploid-like system for buffering the effects of deleterious mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号