首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sperm size and number are important determinants of male reproductive success. The genus Drosophila exhibits a remarkable diversity of sperm production strategies, including the production of multiple sperm morphs by individual males, a phenomenon called sperm heteromorphism. Sperm-heteromorphic Drosophila species in the obscura group produce large numbers of infertile "parasperm" in addition to fertile eusperm. Parasperm have been hypothesized to perform a number of roles in place of fertilization, predominantly focused on their potential function in postcopulatory sexual selection. However, the evolutionary significance of parasperm remains unknown. Here we measured several male and female morphological, behavioral, and life-history traits in 13 obscura group species to test competing hypotheses of parasperm function using comparative methods. We found that parasperm size was unrelated to female reproductive tract morphology but was negatively related to our two indices of sperm competition, suggesting that postcopulatory sexual selection may indeed have shaped the evolution of parasperm. We also found abundant coevolution between male and female reproductive traits. Some of these relationships have been found in both sperm-monomorphic and sperm-heteromorphic taxa, but others are dissimilar. We discuss the significance of our results to the evolution of reproductive traits and the elusive function of Drosophila parasperm.  相似文献   

2.
Sperm competition arises as a result of complex interactions among male and female factors. While the roles of some male factors are known, little is known of the molecules or mechanisms that underlie the female contribution to sperm competition. The genetic tools available for Drosophila allow us to identify, in an unbiased manner, candidate female genes that are critical for mediating sperm competition outcomes. We first screened for differences in female sperm storage and use patterns by characterizing the natural variation in sperm competition in a set of 39 lines from the sequenced Drosophila Genetic Reference Panel (DGRP) of wild-derived inbred lines. We found extensive female variation in sperm competition outcomes. To generate a list of candidate female genes for functional studies, we performed a genome-wide association mapping, utilizing the common single-nucleotide polymorphisms (SNPs) segregating in the DGRP lines. Surprisingly, SNPs within ion channel genes and other genes with roles in the nervous system were among the top associated SNPs. Knockdown studies of three candidate genes (para, Rab2, and Rim) in sensory neurons innervating the female reproductive tract indicate that some of these candidate female genes may affect sperm competition by modulating the neural input of these sensory neurons to the female reproductive tract. More extensive functional studies are needed to elucidate the exact role of all these candidate female genes in sperm competition. Nevertheless, the female nervous system appears to have a previously unappreciated role in sperm competition. Our results indicate that the study of female control of sperm competition should not be limited to female reproductive tract-specific genes, but should focus also on diverse biological pathways.  相似文献   

3.
Sperm are often considered to be individuals, in part because of their unique genetic identities produced as a result of synapsis during meiosis, and in part due to their unique ecology, being ejected away from the soma to continue their existence in a foreign environment. Selection at the level of individual sperm has been suggested to explain the evolution of two enigmatic sperm phenotypes: sperm heteromorphism, where more than one type of sperm is produced by a male, and sperm conjugation, where multiple sperm join together for motility and transport through the female reproductive tract before dissociation prior to fertilization. In sperm heteromorphic species, only one of the sperm morphs typically participates in fertilization, with the non‐fertilizing “parasperm” being interpreted as reproductive altruists. Likewise, in species with sperm conjugation, high levels of sperm mortality have been suggested to be required for conjugate break‐up and this has been considered evidence of kin‐selected altruism. However, it is unclear if sperm possess the heritable variation in fitness (i.e. are individuals) required for the evolution of cooperation. We investigate the question of sperm individuality by focusing on how sperm morphology is determined and how sperm conjugates are formed. Concentrating on sperm conjugation, we discuss functional hypotheses for the evolutionary maintenance of this remarkable trait. Additionally, we speculate on the potential origins of sperm heteromorphism and conjugation, and explore the diversification and losses of these traits once they have arisen in a lineage. We find current evidence insufficient to support the concept of sperm control over their form or function. Thus, without additional evidence of haploid selection (i.e. sperm phenotypes that reflect their haploid genome and result in heritable differences in fitness), sperm heteromorphism and conjugation should be interpreted not as cooperation but rather as traits selected at the level of the male, much like other ejaculatory traits such as accessory gland proteins and ejaculate size.  相似文献   

4.
SPERM COMPETITION SELECTS BEYOND RELATIVE TESTES SIZE IN BIRDS   总被引:1,自引:0,他引:1  
Sperm morphology varies considerably across taxa, and postcopulatory sexual selection is thought to be one of the main forces responsible for this diversity. Several studies have investigated the effects of the variation in sperm design on sperm function, but the consequences of variation in sperm design on testis morphology have been overlooked. Testes size or architecture may determine the size of the sperm they produce, and selection for longer sperm may require concomitant adaptations in the testes. Relative testes size differs greatly between species and is often used as an index of sperm competition, but little is known about whether larger testes have more sperm-producing tissue or produce sperm at a faster rate. Using a comparative approach in New World Blackbirds (Icteridae), we found (1) a strong link between testis histology and sperm length, suggesting selection on testis architecture through selection on sperm size, and (2) that species under intense sperm competition had a greater proportion of sperm-producing tissue within their testes. These results support the prediction that sperm competition fosters adaptations in reproductive organs that extend beyond testes size, and raise questions about the trade-offs influencing reproductive investment.  相似文献   

5.
Motility patterns of caput epididymal chimpanzee sperm, caput epididymal chimpanzee sperm incubated in vitro with chimpanzee cauda epididymal fluid, and cauda epididymal chimpanzee sperm were assessed quantitatively. Sperm recovered from the caput epididymis showed no motility, whereas sperm recovered from cauda epididymis showed progressive forward motility. After incubation in cauda fluid, approximately 25% of caput epididymal sperm showed some motile activity. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed that the surface of caput epididymal sperm, incubated in cauda fluid, was modified by the appearance of a major protein-glycoprotein surface component with an apparent molecular weight of 27 kilodaltons (kD). THis 27-kD component was not detected on caput epididymal sperm incubated in buffer or in caput fluid. However, it was present in cauda fluid and on cauda epididymal sperm. Binding to caput epididymal sperm was cell specific in that chimpanzee erythrocytes incubated in cauda fluid did not bind this 27-kD cauda fluid component. Motility patterns of ejaculated chimpanzee sperm and of ejaculated chimpanzee sperm incubated in the uterus of adult female chimpanzees also were assessed quantitatively. Ejaculated sperm showed progressive forward motility, whereas in utero incubated ejaculated sperm showed hyperactivated motility typical of capacitated sperm. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed the loss of a 27-kD component from the surface of ejaculated sperm after in utero incubation. No significant change in the 125I-distribution pattern was detectable when ejaculated sperm were incubated in buffer. These results suggest that the lumenal fluid component, which becomes adsorbed to the surface of chimpanzee sperm during maturation in the epididymis and which is removed from the surface of mature chimpanzee sperm in the female reproductive tract, affects sperm motility.  相似文献   

6.
Chen Q  Peng H  Lei L  Zhang Y  Kuang H  Cao Y  Shi QX  Ma T  Duan E 《Cell research》2011,21(6):922-933
In the journey from the male to female reproductive tract, mammalian sperm experience a natural osmotic decrease (e.g., in mouse, from ~415 mOsm in the cauda epididymis to ~310 mOsm in the uterine cavity). Sperm have evolved to utilize this hypotonic exposure for motility activation, meanwhile efficiently silence the negative impact of hypotonic cell swelling. Previous physiological and pharmacological studies have shown that ion channel-controlled water influx/efflux is actively involved in the process of sperm volume regulation; however, no specific sperm proteins have been found responsible for this rapid osmoadaptation. Here, we report that aquaporin3 (AQP3) is a sperm water channel in mice and humans. Aqp3-deficient sperm show normal motility activation in response to hypotonicity but display increased vulnerability to hypotonic cell swelling, characterized by increased tail bending after entering uterus. The sperm defect is a result of impaired sperm volume regulation and progressive cell swelling in response to physiological hypotonic stress during male-female reproductive tract transition. Time-lapse imaging revealed that the cell volume expansion begins at cytoplasmic droplet, forcing the tail to angulate and form a hairpin-like structure due to mechanical membrane stretch. The tail deformation hampered sperm migration into oviduct, resulting in impaired fertilization and reduced male fertility. These data suggest AQP3 as an essential membrane pathway for sperm regulatory volume decrease (RVD) that balances the "trade-off" between sperm motility and cell swelling upon physiological hypotonicity, thereby optimizing postcopulatory sperm behavior.  相似文献   

7.
Sperm length is extremely variable across species, but a general explanation for this variation is lacking. However, when the risk of sperm competition is high, sperm length is predicted to be less variable within species, and there is some evidence for this in birds and social insects. Here, we examined intraspecific variation in sperm length, both within and between males, and its potential associations with sperm competition risk and variation in female reproductive tract morphology across dung flies. We used two measures of variation in sperm size, and testis size was employed as our index of sperm competition risk. We found no evidence of associations between sperm length variation and sperm competition or female reproductive tract variation. These results suggest that variation in sperm competition risk may not always be associated with variation in sperm morphology, and the cause(s) of sperm length variation in dung flies remains unclear.  相似文献   

8.
Higginson DM  Henn KR 《PloS one》2012,7(3):e34190
Sperm conjugation is an unusual variation in sperm behavior where two or more spermatozoa physically unite for motility or transport through the female reproductive tract. Conjugation has frequently been interpreted as sperm cooperation, including reproductive altruism, with some sperm advancing their siblings toward the site of fertilization while ostensibly forfeiting their own ability to fertilize through damage incurred during conjugate break-up. Conversely, conjugation has been proposed to protect sensitive regions of spermatozoa from spermicidal conditions within the female reproductive tract. We investigated the possibility of dissociation-induced sperm mortality and tested for a protective function of conjugation using the paired sperm of the diving beetle, Graphoderus liberus. Sperm conjugates were mechanically dissociated and exposed to potentially damaging tissue extracts of the female reproductive tract and somatic tissue. We found no significant difference in viability between paired sperm and dissociated, single sperm. The results further indicate that the reproductive tract of female G. liberus might not be spermicidal and conjugation is not protective of sperm viability when damaging conditions do exist. Our results support the interpretation that, at least in some taxa, sperm conjugation is neither protective nor damaging to sperm viability.  相似文献   

9.
Sperm cells are exceptionally morphologically diverse across taxa. However, morphology can be quite uniform within species, particularly for species where females copulate with many males per reproductive bout. Strong sexual selection in these promiscuous species is widely hypothesized to reduce intraspecific sperm variation. Conversely, we hypothesize that intraspecific sperm size variation may be maintained by high among-female variation in the size of sperm storage organs, assuming that paternity success improves when sperm are compatible in size with the sperm storage organ. We use individual-based simulations and an analytical model to evaluate how selection on sperm size depends on promiscuity level and variation in sperm storage organ size (hereafter, female preference variation). Simulations of high promiscuity (10 mates per female) showed stabilizing selection on sperm when female preference variation was low, and disruptive selection when female preference variation was high, consistent with the analytical model results. With low promiscuity (2–3 mates per female), selection on sperm was stabilizing for all levels of female preference variation in the simulations, contrasting with the analytical model. Promiscuity level, or mate sampling, thus has a strong impact on the selection resulting from female preferences. Furthermore, when promiscuity is low, disruptive selection on male traits will occur under much more limited circumstances (i.e. only with higher among-female variation) than many previous models suggest. Variation in female sperm storage organs likely has strong implications for intraspecific sperm variation in highly promiscuous species, but likely does not explain differences in intraspecific sperm variation for less promiscuous taxa.  相似文献   

10.
This study presents three models to explain the mechanism oflast male sperm precedence in birds. Because passive loss ofsperm from the female reproductive tract occurs, all modelsincorporate this process. The three models are passive spermloss alone, stratification with passive sperm loss, and displacementwith passive sperm loss. With two inseminations containing thesame number of sperm, the models make the following predictions.For passive sperm loss alone, (1) differential paternity ispositively and linearly related to the time interval betweeninseminations, (2) with a slope that is equal to rate of lossof sperm from the female reproductive tract, (3) with an interceptthat is the same as the differential fertilizing capacity betweenthe semen of the two inseminations, and (4) the ratio of offspringfrom two inseminations remains constant over time. For stratification,(1) the relationship between differential paternity and theinterval between inseminations is nonlinear and exhibits a "brokenstick" pattern, with a substantial first-insemination precedencefor short intervals, and (2) the proportion of offspring fatheredby the first insemination increases over time. For displacement,the relationship between differential paternity and the intervalbetween inseminations is nonlinear and also exhibits a "brokenstick" pattern, but in contrast to the stratification model,sperm from the last insemination have precedence. Data fromthree experimental studies of the domestic fowl and one forthe turkey provide the opportunity to test these models, albeitto different extents. The data from all studies are consistentwith the passive sperm-loss model, except that one aspect ofone data set provided ambiguous support for stratification.None of the data provided any support for the displacement model.  相似文献   

11.
Postcopulatory sexual selection is widely accepted to underlie the extraordinary diversification of sperm morphology. However, why does it favour longer sperm in some taxa but shorter in others? Two recent hypotheses addressing this discrepancy offered contradictory explanations. Under the sperm dilution hypothesis, selection via sperm density in the female reproductive tract favours more but smaller sperm in large, but the reverse in small, species. Conversely, the metabolic constraint hypothesis maintains that ejaculates respond positively to selection in small endothermic animals with high metabolic rates, whereas low metabolic rates constrain their evolution in large species. Here, we resolve this debate by capitalizing on the substantial variation in mammalian body size and reproductive physiology. Evolutionary responses shifted from sperm length to number with increasing mammalian body size, thus supporting the sperm dilution hypothesis. Our findings demonstrate that body-size-mediated trade-offs between sperm size and number can explain the extreme diversification in sperm phenotypes.  相似文献   

12.
Inter- and intraspecific studies in gonochoristic animals reveal a covariation between sperm characteristics and the size of the female reproductive tract, indicating a rapid evolutionary divergence, which is consistent with the theory of post-copulatory sexual selection. Simultaneous hermaphrodites differ from species with separate sexes (gonochorists) in that they possess both functional male and female reproductive organs at the same time. We investigated whether in hermaphroditic animals intraspecific variation in reproductive traits results from divergent coevolution, by quantifying the variation in male and female traits among six natural populations of the snail Arianta arbustorum and examining the covariation in interacting traits. There was a significant among-population variation in spermatophore volume, number of sperm transferred and sperm length, as well as in volume of the sperm storage organ (spermatheca) and number of tubules, but not in spermatheca length. We found a positive association between sperm number transferred and spermatheca volume. This result suggests that the same post-copulatory mechanisms as in gonochorists drive the correlated evolution of reproductive characters in hermaphrodites.  相似文献   

13.
14.
While sperm competition risk favours males transferring many sperm to secure fertilizations, females of a variety of species actively reduce sperm numbers reaching their reproductive tract, e.g. by extrusion or killing. Potential benefits of spermicide to females include nutritional gains, influence over sperm storage and paternity, and the elimination of sperm bearing somatic mutations that would lower zygote fitness.We investigated changes in sperm viability after in vivo and in vitro exposure to the female tract in the polyandrous fly, Scathophaga stercoraria. Sperm viability was significantly lower in the females' spermathecae immediately after mating than in the experimental males' testes. Males also varied significantly in the proportion of live sperm found in storage in vivo. However, the exact mechanism of sperm degradation remains to be clarified. In vitro exposure to extracts of the female reproductive tract, including female accessory glands, failed to significantly lower sperm viability compared to controls. These results are consistent either with postcopulatory sperm mortality in vivo depending entirely on the male (with individual differences in sperm viability, motility or longevity) or with postcopulatory sperm mortality being subtly affected by female effects which were not detected by the in vitro experimental conditions. Importantly, we found no evidence in support of the hypothesis that female accessory glands contribute to sexual conflict via spermicide. Therefore, female muscular control remains to date the only ascertained mechanism of female influence on sperm storage in this species.  相似文献   

15.
Despite its central role in post-copulatory sexual selection, the female reproductive tract is poorly understood. Here we provide the first experimental study of the adaptive significance of variation in female sperm-storage organ morphology. Using populations of Drosophila melanogaster artificially selected for longer or shorter seminal receptacles, we identify relationships between the length of this primary sperm-storage organ and the number of sperm stored, pattern of progeny production, rate of egg fertilization, remating interval, and pattern of sperm precedence. Costs and benefits of relatively short or long organs were identified. Benefits of longer receptacles include increased sperm-storage capacity and thus progeny production from a single insemination. Results suggest that longer receptacles have not naturally evolved because of developmental time costs and a correlated reduction in longevity of mated females. This latter cost may be a consequence of sexual conflict mediated by ejaculate toxicity. Receptacle length did not alter the pattern of sperm precedence, which is consistent with data on the co-evolution of sperm and female receptacle length, and a pattern of differential male fertilization success being principally determined by the interaction between these male and female traits.  相似文献   

16.
Sperm storage is a widespread phenomenon across taxa and mating systems but its consequences for central fitness parameters, such as sex ratios, has rarely been investigated. In Australian painted dragon lizards (Ctenophorus pictus), we describe elsewhere that male reproductive success via sperm competition is largely an effect of sperm storage. That is, sperm being stored in the female reproductive tract out-compete more recently inseminated sperm in subsequent ovarian cycles. Here we look at the consequences of such sperm storage for sex allocation in the same species, which has genetic sex determination. We show that stored sperm have a 23% higher probability of producing sons than daughters. Thus, shifts in sex ratio, for example over the reproductive season, can partly be explained by different survival of son-producing sperm or some unidentified female mechanism taking effect during prolonged storage.  相似文献   

17.
Sperm conjugation occurs when two or more sperm physically unite for motility or transport through the female reproductive tract. In many muroid rodent species, sperm conjugates have been shown to form by a single, conspicuous apical hook located on the sperm head. These sperm “trains” have been reported to be highly variable in size and, despite all the heads pointing in roughly the same direction, exhibit a relatively disordered arrangement. In some species, sperm “trains” have been shown to enhance sperm swimming speed, and thus have been suggested to be advantageous in sperm competition. Here, we assessed the behavior of sperm in the sandy inland mouse (Pseudomys hermannsburgensis), a muroid rodent that bears sperm with three apical hooks. First, we accrued genetic evidence of multiple paternity within “wild” litters to unequivocally show that sperm competition does occur in this species. Following this we utilized both in vitro and in vivo methodologies to determine whether sandy inland mouse sperm conjugate to form motile trains. Our observations of in vitro preparations of active sperm revealed that sandy inland mouse sperm exhibit rapid, progressive motility as individual cells only. Similarly, histological sections of the reproductive tracts of mated females revealed no in vivo evidence of sperm conjugate formation. We conclude that the unique, three‐hooked morphology of the sandy inland mouse sperm does not facilitate the formation of motile conjugates, and discuss our findings in relation to the different hypotheses for the evolution of the muroid rodent hook/s.  相似文献   

18.
Literature on sperm competition in the Acari is reviewed and supplemented with the author's unpublished observations. As in other animals, morphology and physiology of the female reproductive tract are key factors establishing the sperm competition pattern. First-male sperm priority was found in Gamasida and Actinedida, whereas in Acaridida the last males to mate had the highest reproductive success. However, this general pattern may be modified by behavioural factors, and another aspect needs scrutiny: in many groups of mites sperm cells follow routes other than the lumen of the reproductive tract to meet and fertilize the oocyte. The Acari are a very promising group for future research because of the wide range of sperm competition patterns, accompanied by great diversity in reproductive morphology, physiology and mating.  相似文献   

19.
Selfish genetic elements (SGEs) are ubiquitous in eukaryotes and bacteria, and make up a large part of the genome. They frequently target sperm to increase their transmission success, but these manipulations are often associated with reduced male fertility. Low fertility of SGE-carrying males is suggested to promote polyandry as a female strategy to bias paternity against male carriers. Support for this hypothesis is found in several taxa, where SGE-carrying males have reduced sperm competitive ability. In contrast, when SGEs give rise to reproductive incompatibilities between SGE-carrying males and females, polyandry is not necessarily favoured, irrespective of the detrimental impact on male fertility. This is due to the frequency-dependent nature of these incompatibilities, because they will decrease in the population as the frequency of SGEs increases. However, reduced fertility of SGE-carrying males can prevent the successful population invasion of SGEs. In addition, SGEs can directly influence male and female mating behaviour, mating rates and reproductive traits (e.g. female reproductive tract length and male sperm). This reveals a potent and dynamic interaction between SGEs and polyandry highlighting the potential to generate sexual selection and conflict, but also indicates that polyandry can promote harmony within the genome by undermining the spread of SGEs.  相似文献   

20.
Wolfner MF 《PLoS biology》2011,9(11):e1001191
Sperm that females receive during mating are stored in special places in the females' reproductive tracts. These storage sites serve to support and retain the sperm, maintaining the sperms' motility and, in mammals, permitting final sperm-maturation. The molecules that attract sperm to these sites and mediate what happens to them there have remained elusive. New research, using elegant genetic tools in Drosophila, shows that secretory cells associated with a sperm storage organ are important in sperm-supportive functions. When females lack function of these cells, they do not store sperm, or the sperm that they do store lose motility. Intriguingly, these effects influence gametes beyond the secretory cells' immediate vicinity. Loss of these cells eliminates the motility of sperm stored elsewhere in the reproductive tract and prevents the movement of eggs through the tract to exit the female. As a result of the latter problem, fertilized eggs hatch inside female flies that lack these secretory cells: instead of laying eggs, these females can "give birth" to live offspring. Because the cellular source of these gamete-regulating substances is now known, future studies can identify the specific molecules and mechanisms by which a female attracts sperm into storage and regulates the movement of sperm and eggs within her reproductive tract. It will be fascinating to determine how these molecules and mechanisms maintain gametes in active and viable forms and how evolution can modulate this to result in diverse reproductive strategies. Identification of these molecules also has potential practical implications for strategies to regulate the reproduction of insects of medical or agricultural importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号