首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 5 毫秒
1.
Intravital imaging has emerged as a novel and efficient tool for visualization of in situ dynamics of cellular behaviors and cell‐microenvironment interactions in live animals, based on desirable microscopy techniques featuring high resolutions, deep imaging and low phototoxicity. Intravital imaging, especially based on multi‐photon microscopy, has been used in bone research for dynamics visualization of a variety of physiological and pathological events at the cellular level, such as bone remodeling, hematopoiesis, immune responses and cancer development, thus, providing guidance for elucidating novel cellular mechanisms in bone biology as well as guidance for new therapies. This review is aimed at interpreting development and advantages of intravital imaging in bone research, and related representative discoveries concerning bone matrices, vessels, and various cells types involved in bone physiologies and pathologies. Finally, current limitations, further refinement, and extended application of intravital imaging in bone research are concluded.   相似文献   

2.
3.
We demonstrate an accurate quantitative characterization of absolute two‐ and three‐photon absorption (2PA and 3PA) action cross sections of a genetically encodable fluorescent marker Sypher3s. Both 2PA and 3PA action cross sections of this marker are found to be remarkably high, enabling high‐brightness, cell‐specific two‐ and three‐photon fluorescence brain imaging. Brain imaging experiments on sliced samples of rat's cortical areas are presented to demonstrate these imaging modalities. The 2PA action cross section of Sypher3s is shown to be highly sensitive to the level of pH, enabling pH measurements via a ratiometric readout of the two‐photon fluorescence with two laser excitation wavelengths, thus paving the way toward fast optical pH sensing in deep‐tissue experiments.  相似文献   

4.
Two‐photon microscopy is the tool of choice for fluorescence imaging of deep tissues with high resolution, but can be limited in three‐dimensional acquisition speed and penetration depth. In this work, these issues are addressed by using an acoustic optofluidic lens capable of ultrafast beam shaping on a pixel basis. Driving the lens with different phase profiles enables high‐speed volumetric imaging, or enhanced signal‐to‐background for deeper penetration. Further details can be found in the article by Simonluca Piazza et al. ( e201700050 )

  相似文献   


5.
In this study, we describe an experimental system based on intravital two-photon microscopy for studying endocytosis in live animals. The rodent submandibular glands were chosen as model organs because they can be exposed easily, imaged without compromising their function and, furthermore, they are amenable to pharmacological and genetic manipulations. We show that the fibroblasts within the stroma of the glands readily internalize systemically injected molecules such as fluorescently conjugated dextran and BSA, providing a robust model to study endocytosis. We dynamically image the trafficking of these probes from the early endosomes to the late endosomes and lysosomes while also visualizing homotypic fusion events between early endosomes. Finally, we demonstrate that pharmacological agents can be delivered specifically to the submandibular salivary glands, thus providing a powerful tool to study the molecular machinery regulating endocytosis in a physiological context.  相似文献   

6.
The depth of two‐photon fluorescence imaging in turbid media can be significantly enhanced by the use of the here described fluorescence detection method that allows to efficiently collect scattered fluorescence photons from a wide area of the turbid sample. By using this detector we were able to perform imaging of turbid samples, simulating brain tissue, at depths up to 3 mm, where the two‐photon induced fluorescence signal is too weak to be detected by means used in conventional two‐photon microscopy. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
8.
Currently, the targeted treatment of tumor based on the tumor microenvironment is newly developed. Blood vessels are the key parts in the tumor microenvironment, which is taken as a new visible target for tumor therapy. Multiphoton microscopy (MPM), based on the second harmonic generation and two‐photon excited fluorescence, is available to make the label‐free analysis on the blood vessels in human gliomas. MPM can reveal the vascular morphological characteristics in gliomas, including vascular malformation, intense vascular proliferation, perivascular collagen deposition, perivascular lymphocytes aggregation and microvascular proliferation. In addition, the image analysis algorithms were developed to automatically calculate the perivascular collagen content, vascular cavity area, lumen area, wall area and vessel number. Thus, the vascular morphology, the perivascular collagen deposition and intense vascular proliferation degree can be further quantitatively characterized. Compared with the pathological analysis, the combination of MPM and image analysis has potential advantages in making a quantitative and qualitative analyzing on vascular morphology in glioma microenvironment. As micro‐endoscope and two‐photon fiberscope are technologically improved, this combined method will be a useful imaging way to make the real‐time research on the targeting tumor microenvironment in gliomas.  相似文献   

9.
The optical properties of colloidal ZnO nanoparticle (NP) solutions, with size ranging from several nm to around 200 nm, have been tailored to have high optical nonlinearity for bioimaging with no auto‐fluorescence above 750 nm and minimal auto‐fluorescence below 750 nm. The high second harmonic conversion efficiency enables selective tissue imaging and cell tracking using tunable near‐infrared femtosecond laser source ranging from 750‐980 nm. For laser energies exceeding the two‐photon energy of the bandgap of ZnO (half of 3.34 eV), the SHG signal greatly decreases and the two‐photon emission becomes the dominant signal. The heat generated due to two‐photon absorption within the ZnO NPs enable selective cell or localized tissue destruction using excitation wavelength ranging from 710–750 nm. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号