首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of foreign organisms in the colonies of social insects could affect energy allocation to growth and reproduction of these hosts. Highly specialized invaders of such long-lived hosts, however, can be selected to be less harmful. After all, it pays for these symbionts to keep their host’s good health thereby prolonging cohabitation in the homeostatic environment of the termite colony. Here, we investigated such a hypothesis, focusing on populational parameters of a termite host sharing its nest with an obligatory termite inquiline. To this end, 19 natural colonies of Constrictotermes cyphergaster (Silvestri, 1901) (Termitidae: Nasutitermitinae) were sampled and the (i) number of individuals, (ii) proportion of soldier/workers in the colonies, and (iii) presence/absence of obligatory inquiline Inquilinitermes microcerus (Silvestri, 1901) (Termitidae: Termitinae) were measured. Results revealed a negative correlation between the number of individuals and the proportion of soldier/workers in the host colonies with the presence of I. microcerus colonies. In search of causal mechanisms for such a correlation, we inspected life history traits of both, inquilines and hosts, hypothesizing that such a result could indicate either (i) a dampening effect of the inquiline upon its host population or (ii) the coincidence of the moment of inquiline infiltration with the natural reduction of C. cyphergaster populational growth at the onset of its reproductive phase.  相似文献   

2.
Ant inquilines are obligate social parasites, usually lacking a sterile worker caste, which are dependent on their hosts for survival and reproduction. Social parasites are rare among the fungus‐gardening ants (Myrmicinae: tribe Attini) and only four species are known until now, all being inquilines from the Higher Attini. We describe Mycocepurus castrator sp.n. , the first inquiline social parasite to be discovered in the Lower Attini. Our study of the parasite's behaviour and life history supports the conclusion drawn from external morphology: Mycocepurus castrator is an evolutionarily derived inquiline parasite of Mycocepurus goeldii. Inquilines are of great interest to evolutionary biology because it is debated if they originated via sympatric or allopatric speciation. We discuss the life history evolution, behaviour and morphology of socially parasitic, fungus‐growing ants.  相似文献   

3.
Structural and functional traits of organisms are known to be related to the size of individuals and to the size of their colonies when they belong to one. Among such traits, propensity to inquilinism in termites is known to relate positively to colony size. Larger termitaria hold larger diversity of facultative inquilines than smaller nests, whereas obligate inquilines seem unable to settle in nests smaller than a threshold volume. Respective underlying mechanisms, however, remain hypothetical. Here we test one of such hypotheses, namely, that nest defence correlates negatively to nest volume in Constrictotermes cyphergaster termites (Termitidae: Nasutitermitinae). As a surrogate to defence, we used ‘patrolling rate’, i.e., the number of termite individuals attending per unit time an experimentally damaged spot on the outer wall of their termitaria. We found that patrolling rate decayed allometrically with increasing nest size. Conspicuously higher patrolling rates occurred in smaller nests, while conspicuously lower rates occurred in larger nests presenting volumes in the vicinity of the threshold value for the establishment of inquilinism. This could be proven adaptive for the host and guest. At younger nest age, host colonies are smaller and presumably more vulnerable and unstable. Enhanced defence rates may, hence, prevent eventual risks to hosts from inquilinism at the same time that it prevents inquilines to settle in a still unstable nest. Conversely, when colonies grow and maturate enough to stand threats, they would invest in priorities other than active defence, opening an opportunity for inquilines to settle in nests which are more suitable or less risky. Under this two-fold process, cohabitation between host and inquiline could readily stabilize.  相似文献   

4.
The fig tree, Ficus curtipes, hosts an obligate pollinating wasp, an undescribed Eupristina sp., but can also be pollinated by two inquiline (living in the burrow, nest, gall, or other habitation of another animal) wasps, Diaziella yangi and an undescribed Lipothymus sp. The two inquilines are unable to independently induce galls and depend on the galls induced by the obligate pollinator for reproduction and, therefore, normally enter receptive F. curtipes figs colonised by the obligate pollinators. However, sometimes the inquilines also enter figs that are not colonised by the pollinators, despite consequent reproductive failure. It is still unknown which signal(s) the inquilines use in entering the colonised and non-colonised figs. We conducted behavioural experiments to investigate several possible signals utilised by the inquilines in entering their host receptive figs. Our investigation showed that both inquiline species enter the receptive F. curtipes figs in response to the body odours of the obligate wasps and one of the main compounds emitted by the figs, 6-methyl-5-hepten-2-one. The compound was not found in the pollinator body odours, suggesting that the two inquiline wasps can utilise two signals to enter their host figs, which is significant for the evolution of the fig-fig wasp system. These inquilines could evolve to become mutualists of the figs if they evolve the ability to independently gall fig flowers; there is, however, another possibility that a monoecious Ficus species hosting such inquilines may evolve into a dioecious one if these inquilines cannot evolve the above-mentioned ability. Additionally, this finding provides evidence for the evolution of chemical communication between plants and insects.  相似文献   

5.
Social and brood parasitisms are nonconsumptive forms of parasitism involving the exploitation of the colonies or nests of a host. Such parasites are often related to their hosts and may evolve in various ecological contexts, causing evolutionary constraints and opportunities for both parasites and their hosts. In extreme cases, patterns of diversification between social parasites and their hosts can be coupled, such that diversity of one is correlated with or even shapes the diversity of the other. Aphids in the genus Tamalia induce galls on North American manzanita (Arctostaphylos) and related shrubs (Arbutoideae) and are parasitized by nongalling social parasites or inquilines in the same genus. We used RNA sequencing to identify and generate new gene sequences for Tamalia and performed maximum‐likelihood, Bayesian and phylogeographic analyses to reconstruct the origins and patterns of diversity and host‐associated differentiation in the genus. Our results indicate that the Tamalia inquilines are monophyletic and closely related to their gall‐forming hosts on Arctostaphylos, supporting a previously proposed scenario for origins of these parasitic aphids. Unexpectedly, population structure and host‐plant‐associated differentiation were greater in the non‐gall‐inducing parasites than in their gall‐inducing hosts. RNA‐seq indicated contrasting patterns of gene expression between host aphids and parasites, and perhaps functional differences in host‐plant relationships. Our results suggest a mode of speciation in which host plants drive within‐guild diversification in insect hosts and their parasites. Shared host plants may be sufficient to promote the ecological diversification of a network of phytophagous insects and their parasites, as exemplified by Tamalia aphids.  相似文献   

6.
Inquiline ant species are workerless social parasites whose queens reproduce in colonies of other species alongside the host queens. Inquilines arise either when one non-parasitic species evolves into an inquiline parasite of another non-parasitic species (the interspecific hypothesis), or by the speciation of intraspecific inquilines from their host stock (the intraspecific hypothesis): it is unlikely that inquilines evolve from other forms of social parasite. This paper reviews the evidence for and against the inter-and intraspecific hypotheses. All inquilines are close phylogenetic relatives of their host species (loose ‘Emery's rule’), and some are their host's closest relative (strict ‘Emery's rule’). A problem for the interspecific hypothesis is how to explain the strict Emery's rule, because phylogenetic constraints on host choice are probably quite weak. By contrast, the intraspecific hypothesis has difficulty accounting for the parasites' sympatric reproductive isolation. Facultative polygyny, in which queens may found colonies alone or by adoption into an existing multi-queen colony, should promote the evolution of small intraspecific inquilines. This is because small colony-founding queens should preferentially seek adoption, which provides the opportunity to produce a sexual-only brood. We suggest that microgynes, i.e. miniature queens found in some polygynous ants, represent such parasites. We review the evidence that inquiline species have evolved intraspecifically from microgynes in Myrmica ants. The coexistence within a species of a monogynous (singly-queened) and a polygynous form is probably a phenomenon usually unconnected with inquiline evolution. The reproductive isolation of intraspecific inquilines plausibly arises from divergent breeding behaviour associated with the parasites' small size. Such divergence could involve either a temporal separation in mating episodes, with small parasites maturing early, or a spatial separation, with small males being sexually-selected to mate near the nest with small queens seeking adoption, instead of in mating aggregations. We conclude that inquiline species strictly following Emery's rule could have evolved by the intraspecific route. If so, such species provide evidence for West-Eberhard's “alternative adaptation” hypothesis that between-species diversity frequently stems from diversity within species. They also represent likely cases of sympatric speciation. We suggest work on the parasites' phytogeny, genetics, behaviour and mating biology to test these conclusions further.  相似文献   

7.
Termite nests are often secondarily inhabited by other termite species ( = inquilines) that cohabit with the host. To understand this association, we studied the trail-following behaviour in two Neotropical species, Constrictotermes cyphergaster (Termitidae: Nasutitermitinae) and its obligatory inquiline, Inquilinitermes microcerus (Termitidae: Termitinae). Using behavioural experiments and chemical analyses, we determined that the trail-following pheromone of C. cyphergaster is made of neocembrene and (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol. Although no specific compound was identified in I. microcerus, workers were able to follow the above compounds in behavioural bioassays. Interestingly, in choice tests, C. cyphergaster prefers conspecific over heterospecific trails while I. microcerus shows the converse behaviour. In no-choice tests with whole body extracts, C. cyphergaster showed no preference for, while I. microcerus clearly avoided heterospecific trails. This seems to agree with the hypothesis that trail-following pheromones may shape the cohabitation of C. cyphergaster and I. microcerus and reinforce the idea that their cohabitation is based on conflict-avoiding strategies.  相似文献   

8.
A new term, agastoparasitism, is proposed for parasitism among closely related species. Cynipid inquilines are typical agastoparasites. They cannot induce galls; instead their larvae live inside the galls formed by other cynipids. As in many other groups of agastoparasites, there are two competing hypotheses for the evolutionary origin of cynipid inquilines: either they arose from one of their cynipid hosts, and later radiated to exploit other gall-inducing cynipids (monophyletic origin), or they arose repeatedly, each inquiline from its host (polyphyletic origin). These hypotheses for the origin of cynipid inquilines were tested by a phylogenetic analysis of representative species of cynipid gall inducers and inquilines based on adult morphological characters. The analysis supported the monophyly of the inquilines and indicated an origin from gall inducers related to the genus Diastrophus, one of the current host groups. To examine whether the result of the analysis was influenced by convergent similarities among inquilines because of their similar mode of life, all putative apomorphies shared by some or all of the inquilines but not occurring in any of the gall inducers were removed. Despite this, the phylogenetic conclusions essentially remained the same, that is, the support for inquiline monophyly was not caused by convergent evolution. Based on these results, adaptive aspects of the evolutionary origin and maintenance of cynipid inquilinism are discussed, as well as general patterns in the evolution of agastoparasitism.  相似文献   

9.
Even for parasitoids with a wide host range, not all host species are equally suitable, and host quality often depends on the plant the host feeds on. We compared oviposition choice and offspring performance of a generalist pupal parasitoid, Pteromalus apum (Retzius) (Hymenoptera: Pteromalidae), on two congeneric hosts reared on two plant species under field and laboratory conditions. The plants contain defensive iridoid glycosides that are sequestered by the hosts. Sequestration at the pupal stage differed little between host species and, although the concentrations of iridoid glycosides in the two plant species differ, there was no effect of diet on the sequestration by host pupae. The rate of successful parasitism differed between host species, depending on the conditions they were presented in. In the field, where plant‐associated cues are present, the parasitoid used Melitaea cinxia (L.) over Melitaea athalia (Rottemburg) (Lepidoptera: Nymphalidae), whereas more M. athalia were parasitised in simplified laboratory conditions. In the field, brood size, which is partially determined by rate of superparasitism, depended on both host and plant species. There was little variation in other aspects of offspring performance related to host or plant species, indicating that the two host plants are of equal quality for the hosts, and the hosts are of equal quality for the parasitoids. Corresponding to this, we found no evidence for associative learning by the parasitoid based on their natal host, so with respect to these host species they are truly generalist in their foraging behaviour.  相似文献   

10.
Obligate social parasites of Hymenoptera, known as inquilines, have received enormous attention due to the elaborate adaptations they exhibit for exploiting their hosts, and because they have frequently been used to infer sympatric speciation. Their population biology can be difficult to infer as they are both rare and difficult to extract from host nests. Sex allocation has been studied for very few inquilines of social Hymenoptera. Here we report sex ratio patterns in the allodapine bee Inquilina schwarzi, which is an obligate social parasite of another allodapine, Exoneura robusta. We show that the sex ratio of this inquiline varies with its brood number, it is female-biased in the smallest broods, but becomes more even in larger broods, where the population-wide sex ratio is close to parity. We argue that this pattern of bias is consistent with local resource competition, where inquiline females compete to inherit their natal colony. We also argue that extremely female-biased sex ratios of the host species, combined with overall sex ratio parity in the parasite, may help ameliorate disparity in effective population sizes between these two species which are locked in an evolutionary arms race.  相似文献   

11.
Social parasitic Hymenopterans have evolved morphological, chemical, and behavioral adaptations to overcome the sophisticated recognition and defense systems of their social host to invade host nests and exploit their worker force. In bumblebees, social parasitism appeared in at least 3 subgenera independently: in the subgenus Psithyrus consisting entirely of parasitic species, in the subgenus Alpinobombus with Bombus hyperboreus, and in the subgenus Thoracobombus with B. inexspectatus. Cuckoo bumblebee males utilize species‐specific cephalic labial gland secretions for mating purposes that can impact their inquiline strategy. We performed cephalic labial gland secretions in B. hyperboreus, B. inexspectatus and their hosts. Males of both parasitic species exhibited high species specific levels of cephalic gland secretions, including different main compounds. Our results showed no chemical mimicry in the cephalic gland secretions between inquilines and their host and we did not identify the repellent compounds already known in other cuckoo bumblebees.  相似文献   

12.
Two species of obligate brood‐parasitic Cuculus cuckoos are expanding their ranges in Beringia. Both now breed on the Asian side, close to the Bering Strait, and are found in Alaska during the breeding season. From May to July 2017, we used painted 3D‐printed model eggs of two cuckoo host‐races breeding in northeastern Siberia to test behavioral responses of native songbirds on both sides of the Bering Strait, with particular attention to species that are known cuckoo hosts in their Siberian range. Each host nest was tested after the second egg was laid and, if possible, again 4 days later with a model of a different type. Although our Siberian study site was also outside the known breeding ranges of the cuckoos, we found that Siberian birds had strong anti‐parasite responses, with 14 of 22 models rejected. In contrast, birds in Alaska had virtually no detectable anti‐parasite behaviors, with only one of 96 models rejected; the rejecters were Red‐throated Pipits (Anthus cervinus). Such differences suggest that the cuckoos might successfully parasitize naïve hosts and become established in North America whether or not their historic host species are widely available.  相似文献   

13.
Insect parasitoids locate hosts via reliable and predictable cues such as volatile emissions from hosts and/or host plants. For insects that depend on mutualistic organisms, such as many wood‐boring insects, symbiont‐derived semiochemicals may represent a source of such cues to be exploited by natural enemies. Ultimately, exploitation of these signals may increase fitness by optimizing foraging efficiency. Female parasitoids of Ibalia leucospoides use volatiles from the fungal symbiont Amylostereum areolatum of their host Sirex noctlio to find concealed host eggs and young larvae within the xylem. We hypothesize that the temporal pattern of fungal emissions may indicate not only the presence of host larvae but also be used as a cue that indicates host suitability and age. Such information would allow female parasitoids to discern more efficiently between hosts within ovipositor reach from those already buried too deep into the xylem and out of reach. In this context, we assessed the behaviour of I. leucospoides females to volatiles of A. areolatum in a ‘Y’‐tube olfactometer at regular intervals over 30 days. We concurrently examined the fungal volatiles by headspace sampling through solid‐phase microextraction (SPME) followed by gas chromatography mass spectrometry (GC‐MS). We observed that females were attracted to volatiles produced by two‐week‐old fungal cultures, a period that matches when older larvae are still within ovipositor reach. Four chemical compounds were detected: ethanol, acetone, acetaldehyde and the sesquiterpene 2,2,8‐trimethyltricyclo[6.2.2.01,6]dodec‐5‐ene, with each compounds’ relative abundance changing over time. Results are discussed in the context of parasitoids fitness. Future studies involving electrophysiology, different collection techniques and further behavioural assays will help in identifying the compounds that convey temporal information to female parasitoids and have the potential for being used in integrated pest management programmes.  相似文献   

14.
Host specificity in parasites can be explained by spatial isolation from other potential hosts or by specialization and speciation of specific parasite species. The first assertion is based on allopatric speciation, the latter on differential lifetime reproductive success on different available hosts. We investigated the host specificity and cophylogenetic histories of four sympatric European bat species of the genus Myotis and their ectoparasitic wing mites of the genus Spinturnix. We sampled >40 parasite specimens from each bat species and reconstructed their phylogenetic COI trees to assess host specificity. To test for cospeciation, we compared host and parasite trees for congruencies in tree topologies. Corresponding divergence events in host and parasite trees were dated using the molecular clock approach. We found two species of wing mites to be host specific and one species to occur on two unrelated hosts. Host specificity cannot be explained by isolation of host species, because we found individual parasites on other species than their native hosts. Furthermore, we found no evidence for cospeciation, but for one host switch and one sorting event. Host‐specific wing mites were several million years younger than their hosts. Speciation of hosts did not cause speciation in their respective parasites, but we found that diversification of recent host lineages coincided with a lineage split in some parasites.  相似文献   

15.
Grouping behaviours (e.g. schooling, shoaling and swarming) are commonly explicated through adaptive hypotheses such as protection against predation, access to mates or improved foraging. However, the hypothesis that aggregation can result from manipulation by parasites to increase their transmission has never been demonstrated. We investigated this hypothesis using natural populations of two crustacean hosts (Artemia franciscana and Artemia parthenogenetica) infected with one cestode and two microsporidian parasites. We found that swarming propensity increased in cestode‐infected hosts and that red colour intensity was higher in swarming compared with non‐swarming infected hosts. These effects likely result in increased cestode transmission to its final avian host. Furthermore, we found that microsporidian‐infected hosts had both increased swarming propensity and surfacing behaviour. Finally, we demonstrated using experimental infections that these concurrent manipulations result in increased spore transmission to new hosts. Hence, this study suggests that parasites can play a prominent role in host grouping behaviours.  相似文献   

16.
Extensive research has been conducted to reveal how species diversity affects ecosystem functions and services. Yet, consequences of diversity loss for ecosystems as a whole as well as for single community members are still difficult to predict. Arthropod communities typically are species‐rich, and their species interactions, such as those between herbivores and their predators or parasitoids, may be particularly sensitive to changes in community composition. Parasitoids forage for herbivorous hosts by using herbivore‐induced plant volatiles (indirect cues) and cues produced by their host (direct cues). However, in addition to hosts, non‐suitable herbivores are present in a parasitoid's environment which may complicate the foraging process for the parasitoid. Therefore, ecosystem changes in the diversity of herbivores may affect the foraging efficiency of parasitoids. The effect of herbivore diversity may be mediated by either species numbers per se, by specific species traits, or by both. To investigate how diversity and identity of non‐host herbivores influence the behaviour of parasitoids, we created environments with different levels of non‐host diversity. On individual plants in these environments, we complemented host herbivores with 1–4 non‐host herbivore species. We subsequently studied the behaviour of the gregarious endoparasitoid Cotesia glomerata L. (Hymenoptera: Braconidae) while foraging for its gregarious host Pieris brassicae L. (Lepidoptera: Pieridae). Neither non‐host species diversity nor non‐host identity influenced the preference of the parasitoid for herbivore‐infested plants. However, after landing on the plant, non‐host species identity did affect parasitoid behaviour, whereas non‐host diversity did not. One of the non‐host species, Trichoplusia ni Hübner (Lepidoptera: Noctuidae), reduced the time the parasitoid spent on the plant as well as the number of hosts it parasitized. We conclude that non‐host herbivore species identity has a larger influence on C. glomerata foraging behaviour than non‐host species diversity. Our study shows the importance of species identity over species diversity in a multitrophic interaction of plants, herbivores, and parasitoids.  相似文献   

17.
The behavioural ecology of host species is likely to affect their microbial communities, because host sex, diet, physiology, and movement behaviour could all potentially influence their microbiota. We studied a wild population of barn owls (Tyto alba) and collected data on their microbiota, movement, diet, size, coloration, and reproduction. The composition of bacterial species differed by the sex of the host and female owls had more diverse bacterial communities than their male counterparts. The abundance of two families of bacteria, Actinomycetaceae and Lactobacillaceae, also varied between the sexes, potentially as a result of sex differences in hormones and immunological function, as has previously been found with Lactobacillaceae in the microbiota of mice. Male and female owls did not differ in the prey they brought to the nest, which suggests that dietary differences are unlikely to underlie the differences in their microbiota. The movement behaviour of the owls was associated with the host microbiota in both males and females because owls that moved further from their nest each day had more diverse bacterial communities than owls that stayed closer to their nests. This novel result suggests that the movement ecology of hosts can impact their microbiota, potentially on the basis of their differential encounters with new bacterial species as the hosts move and forage across the landscape. Overall, we found that many aspects of the microbial community are correlated with the behavioural ecology of the host and that data on the microbiota can aid in generating new hypotheses about host behaviour.  相似文献   

18.
Akainothrips francisi sp. nov. is shown to be an inquiline (i.e. it invades, and breeds within, domiciles of another species). Currently, its only known host is Dunatothrips aneurae, a subsocial thrips that creates silken domiciles by securing together phyllodes of mulga (Acacia aneura) in the arid zone of Australia. We found Ak. francisi prolifically breeding inside live D. aneurae host domiciles, both immature and mature. Akainothrips francisi did not kill its host and we saw no evidence of antagonistic host‐inquiline interactions. This is thus the second demonstrably inquiline species of Acacia thrips, although other possible inquilines have been suggested including two Akainothrips. We found that Ak. francisi occurred with positive density dependence, and was associated with moderately reduced host reproduction. This latter association was especially evident in larger host domiciles, suggesting that Ak. francisi either inhibits further host reproduction after invasion or exploits poor quality hosts more successfully. Sex ratios were slightly female biased. Akainothrips francisi males were exceptionally variable in size, colour, and foreleg size compared to females, with morphs co‐occurring within domiciles, suggesting sexual selection and the possibility of different male reproductive strategies. The discovery of Ak. francisi highlights particular morphological affinities among known or suspected inquiline Acacia thrips within Akainothrips and other genera, allowing us to hypothesize a common origin of this lifestyle from within Akainothrips. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

19.
Abstract.
  • 1 Rapid and substantial changes have occurred in the parasitoid and inquiline community associated with the agamic galls of Andricus quercuscalicis since it invaded Britain in the late 1950s. The number of parasitoid and inquiline species has risen from one to thirteen over a 15-year period. Although the number of species has been relatively consistent over the last 8 years, the species composition has changed considerably and in a highly characteristic way during this period.
  • 2 The parasitoid complex can be divided into two broadly distinct sets of parasitoid species; one set attacks only the gall former whereas the other set concentrates on the inquilines living in the wall of the gall.
  • 3 The most dramatic change, however, is in the abundance of inquilines which were reported to be virtually absent in earlier studies on this community in Britain. Over a period of only 5 years, between 1988 and 1993, inquiline attack rose from less than 0.01 to an average of 0.26 inquilines per gall. The intensity of inquiline attack is geographically heterogenous, with high inquiline numbers restricted to south-east England. Because of the relatively high specificity of the parasitoids, high inquiline abundance is positively correlated with parasitoid species richness in knopper galls.
  • 4 Parasitism rates, particularly on the gall former, were generally low (<10%). Over the last 5 years, however, seven parasitoid species have been consistently recorded and the mortality caused by these species has increased continuously. The species composition of the community associated with this alien gall wasp in Britain has quickly converged to the community known from its native range in continental Europe. Parasitoid species known to attack the galls of A.quercuscalisis on the continent have been recorded from it in Britain for the first time mainly in areas where inquilines have recently become abundant.
  • 5 Since rates of parasitism of the gall former are still low, parasitoids are unlikely to play a major role in the population dynamics of this invading gall wasp at present, but the rapidly increasing inquiline and parasitoid attack could be a source of increased mortality for native cynipid species which are the alternative hosts of those parasitoid species.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号