首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Aims: To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4‐vinylphenol [4VP] and 4‐ethylphenol [4EP]) from the metabolism of p‐coumaric acid by lactic acid bacteria (LAB). Methods and Results: Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p‐coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p‐coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l?1) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Conclusions: Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p‐coumaric acid. On the other hand, tannins exert an inhibitory effect. Significance and Impact of the Study: This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium.  相似文献   

2.
Aims: To determine the inhibitory effect of phenolic compounds on Lactobacillus casei BL23, the role of two component signal transduction systems (TCS) and the response of Lact. casei BL23 to p‐coumaric acid. Methods and Results: Growth of Lact. casei BL23 and 17 derivative strains defective in each TCS harboured by this strain in the presence of p‐coumaric acid, ferulic acid, caffeic acid or methyl gallate was monitored. Furthermore, changes in the protein content of Lact. casei BL23 when exposed to p‐coumaric acid were evaluated by 2D‐SDS‐PAGE. Eleven proteins differentially expressed in the presence of p‐coumaric acid were detected. Six of them could be identified: ClpP and HtrA, involved in protein turnover and folding, acetyl‐CoA carboxylase, involved in lipid metabolism, and an arginyl‐tRNA synthetase were more abundant, whereas PurL and PurN, involved in purine biosynthesis, were less abundant. Conclusions: No significant differences were observed between the parental strain and the TCS‐defective mutants. p‐Coumaric acid elicited a response against membrane and cytoplasmic damages. Significance and Impact of the Study: The inhibitory effect of phenolic compounds on Lact. casei BL23 has been determined. For the first time, cytoplasmic proteins presumably involved in the response of Lact. casei BL23 against p‐coumaric acid have been identified.  相似文献   

3.
The gene loci fcs, encoding feruloyl coenzyme A (feruloyl-CoA) synthetase, ech, encoding enoyl-CoA hydratase/aldolase, and aat, encoding β-ketothiolase, which are involved in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199 (DSM7063), were localized on a DNA region covered by two EcoRI fragments (E230 and E94), which were recently cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The nucleotide sequences of parts of fragments E230 and E94 were determined, revealing the arrangement of the aforementioned genes. To confirm the function of the structural genes fcs and ech, they were cloned and expressed in Escherichia coli. Recombinant strains harboring both genes were able to transform ferulic acid to vanillin. The feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase activities of the fcs and ech gene products, respectively, were confirmed by photometric assays and by high-pressure liquid chromatography analysis. To prove the essential involvement of the fcs, ech, and aat genes in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199, these genes were inactivated separately by the insertion of omega elements. The corresponding mutants Pseudomonas sp. strain HRfcsΩGm and Pseudomonas sp. strain HRechΩKm were not able to grow on ferulic acid or on eugenol, whereas the mutant Pseudomonas sp. strain HRaatΩKm exhibited a ferulic acid- and eugenol-positive phenotype like the wild type. In conclusion, the degradation pathway of eugenol via ferulic acid and the necessity of the activation of ferulic acid to the corresponding CoA ester was confirmed. The aat gene product was shown not to be involved in this catabolism, thus excluding a β-oxidation analogous degradation pathway for ferulic acid. Moreover, the function of the ech gene product as an enoyl-CoA hydratase/aldolase suggests that ferulic acid degradation in Pseudomonas sp. strain HR199 proceeds via a similar pathway to that recently described for Pseudomonas fluorescens AN103.  相似文献   

4.
The soil bacterium Pseudomonas putida KT2440 has gained increasing biotechnological interest due to its ability to tolerate different types of stress. Here, the tolerance of P. putida KT2440 toward eleven toxic chemical compounds was investigated. P. putida was found to be significantly more tolerant toward three of the eleven compounds when compared to Escherichia coli. Increased tolerance was for example found toward p‐coumaric acid, an interesting precursor for polymerization with a significant industrial relevance. The tolerance mechanism was therefore investigated using the genome‐wide approach, Tn‐seq. Libraries containing a large number of miniTn5‐Km transposon insertion mutants were grown in the presence and absence of p‐coumaric acid, and the enrichment or depletion of mutants was quantified by high‐throughput sequencing. Several genes, including the ABC transporter Ttg2ABC and the cytochrome c maturation system (ccm), were identified to play an important role in the tolerance toward p‐coumaric acid of this bacterium. Most of the identified genes were involved in membrane stability, suggesting that tolerance toward p‐coumaric acid is related to transport and membrane integrity.
  相似文献   

5.
Total phenolic (TPC) and flavonoid (TFC) content, individual phenolic compounds and antioxidant activities of methanol extracts of wheat and corn straw were determined. Germination bioassay was conducted with Abutilon theophrasti Medik. , Asclepias syriaca L., and Chenopodium album L. seed. Samples were fermented by Lactobacillus plantarum and changes in TPC, TFC, antioxidant, and biological activity were investigated. TPC and TFC were significant in both samples and after fermentation their recovery was improved. All samples contain mainly quercetin, cinnamic acid, p‐coumaric acid, and ferulic acid. Fermentation changed the content of phenolic and flavonoid compounds, differently in each case. All tested extracts showed high DPPH activity with IC50 being significantly lower for fermented samples. FRAP activity was also high. Crude straw extracts were overall more effective than fermented ones concerning inhibition of germination and seedlings growth, mainly without statistically significant differences between wheat and corn. Compared with mesotrione, extracts were more effective in germination and seedling growth inhibition of C. album and in seedling growth inhibition of A. theophrasti.  相似文献   

6.
Vanillin is one of the most important flavoring agents used today. That is why many efforts have been made on biotechnological production from natural abundant substrates. In this work, the nonpathogenic Pseudomonas putida strain KT2440 was genetically optimized to convert ferulic acid to vanillin. Deletion of the vanillin dehydrogenase gene (vdh) was not sufficiant to prevent vanillin degradation. Additional inactivation of a molybdate transporter, identified by transposon mutagenesis, led to a strain incapable to grow on vanillin as sole carbon source. The bioconversion was optimized by enhanced chromosomal expression of the structural genes for feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase/aldolase (ech) by introduction of the strong tac promoter system. Further genetic engineering led to high initial conversion rates and molar vanillin yields up to 86 % within just 3 h accompanied with very low by-product levels. To our knowledge, this represents the highest productivity and molar vanillin yield gained with a Pseudomonas strain so far. Together with its high tolerance for ferulic acid, the developed, plasmid-free P. putida strain represents a promising candidate for the biotechnological production of vanillin.  相似文献   

7.
Aims: To isolate and characterize microbes in the soils containing high contents of phenolics and to dissolve the allelopathic inhibition of plants through microbial degradation. Methods and Results: Four microbes were isolated from plant soils using a screening medium containing p‐coumaric acid as sole carbon source. The isolates were identified by biochemical analysis and sequences of their 16S or 18S rDNA, and designated as Pseudomonas putida 4CD1 from rice (Oryza sativa) soil, Ps. putida 4CD3 from pine (Pinus massoniana) soil, Pseudomonas nitroreducens 4CD2 and Rhodotorula glutinis 4CD4 from bamboo (Bambusa chungii) soil. All isolates degraded 1 g l?1 of p‐coumaric acid by 70–93% in inorganic and by 99% in Luria‐Bertani solutions within 48 h. They also effectively degraded ferulic acid, p‐hydroxybenzoic acid and p‐hydroxybenzaldehyde. The microbes can degrade p‐coumaric acid and reverse its inhibition on seed germination and seedling growth in culture solutions and soils. Low pHs inhibited the growth and phenolic degradation of the three bacteria. High temperature inhibited the R. glutinis. Co2+ completely inhibited the three bacteria, but not the R. glutinis. Cu2+, Al3+, Zn2+, Fe3+, Mn2+, Mg2+ and Ca2+ had varying degrees of inhibition for each of the bacteria. Conclusions: Phenolics in plant culture solutions and soils can be decomposed through application of soil microbes in laboratory or controlled conditions. However, modification of growth conditions is more important for acidic and ions‐contaminated media. Significance and Impact of the Study: The four microbes were first isolated and characterized from the soils of bamboo, rice or pine. This study provides some evidence and methods for microbial control of phenolic allelochemicals.  相似文献   

8.
The roots of date palm contain four cell wall‐bound phenolic acids identified as p‐hydroxybenzoic, p‐coumaric, ferulic and sinapic acids. The ferulic acid represents the major phenolic compound since it constitutes 48.2–55.8% of cell wall‐bound phenolic acids. All these phenolic acids were present in the resistant cultivar (BSTN) and the susceptible cultivar (JHL). However, the pre‐infection contents of p‐coumaric, ferulic and sinapic acids were greater in the resistant cultivar than in the susceptible one. For the contents of p‐hydroxybenzoic acid, there was no significant difference between the resistant cultivar and the susceptible cultivar. Similarly, the pre‐infection contents of lignin were approximately equal for both cultivars. Inoculation of the date palm roots by Fusarium oxysporum f. sp. albedinis induced important modifications to the contents of the cell wall‐bound phenolic compounds and lignin, which made it possible to distinguish between resistant and susceptible cultivars. The post‐infection contents of cell wall‐bound phenolic compounds underwent a rapid and intense increase with a maximum accumulation on the tenth day for p‐hydroxybenzoic acid (1.54 μmol/g), p‐coumaric acid (2.77 μmol/g) and ferulic acid (2.64 μmol/g) and on the fifteenth day for sinapic acid (1.85 μmol/g). The maximum contents accumulated in the resistant cultivar were greater than those in the susceptible cultivar, namely, 11 times for p‐hydroxybenzoic acid, 2.6 times for p‐coumaric acid, 1.8 times for ferulic acid and 12.3 times for sinapic acid. In the susceptible cultivar, p‐coumaric acid and ferulic acid contents also increased after inoculation although they did not reach the pre‐infection contents of the resistant cultivar. The contents of p‐hydroxybenzoic acid in the susceptible cultivar roots did not present post‐infection modification and those of sinapic acid decreased instead. The lignin contents increased in both cultivars with a maximum accumulation on the fifteenth day. However, the maximum contents accumulated in the resistant cultivar roots were 1.5 times greater than those of the susceptible cultivar. These results showed clear differences between the resistant BSTN and the susceptible JHL cultivars. The implication of cell wall‐bound phenolic compounds and lignin in the resistance of date palm to F. oxysporum f. sp. albedinis appears to be dependent on the speed and intensity of their accumulation with greater contents in the first stage of infection.  相似文献   

9.
Aims: To investigate whether the presence of Pichia guilliermondii impacts on the production of volatile phenols from mixed wine fermentations with Dekkera bruxellensis and Saccharomyces cerevisiae. Methods and Results: Four inoculation strategies were performed in small‐scale fermentations involving P. guilliermondii, D. bruxellensis and S. cerevisiae using Syrah grape juice supplemented with 100 mg l?1 of p‐coumaric acid. High pressure liquid chromatography was used for the quantification or volatile phenols. Significant high levels of 4‐ethylphenol and 4‐ethylguaicol (720 and 545 μg l?1, respectively), as well as the highest levels of 4‐vinylphenol (>4500 μg l?1), were observed when P. guilliermondii species was inoculated from the beginning of the fermentation. Conclusions: The metabolic interaction occurring between the high vinylphenol producer species P. guilliermondii and D. bruxellensis exhibiting a high vinylphenol reductase activity resulted in an increased production of volatile phenols in wine. Significance and Impact of the Study: Pichia guilliermondii must be considered a very important spoilage yeast in the wine industry capable of producing large amounts of volatile phenols.  相似文献   

10.
Lignocellulosic biomass is the most abundant bioresource on earth containing polymers mainly consisting of d ‐glucose, d ‐xylose, l ‐arabinose, and further sugars. In order to establish this alternative feedstock apart from applications in food, we engineered Pseudomonas putida KT2440 as microbial biocatalyst for the utilization of xylose and arabinose in addition to glucose as sole carbon sources. The d ‐xylose‐metabolizing strain P. putida KT2440_xylAB and l ‐arabinose‐metabolizing strain P. putida KT2440_araBAD were constructed by introducing respective operons from Escherichia coli. Surprisingly, we found out that both recombinant strains were able to grow on xylose as well as arabinose with high cell densities and growth rates comparable to glucose. In addition, the growth characteristics on various mixtures of glucose, xylose, and arabinose were investigated, which demonstrated the efficient co‐utilization of hexose and pentose sugars. Finally, the possibility of using lignocellulose hydrolysate as substrate for the two recombinant strains was verified. The recombinant P. putida KT2440 strains presented here as flexible microbial biocatalysts to convert lignocellulosic sugars will undoubtedly contribute to the economic feasibility of the production of valuable compounds derived from renewable feedstock.  相似文献   

11.
Abstract

Ferulic acid is a fraction of the phenolics present in cereals such as rice and corn as a component of the bran. Substantial amounts of waste bran are generated by the grain processing industry and this can be valorized via extraction, purification and conversion of phenolics to value added chemical products. Alkaline alcohol based extracted and purified ferulic acid from corn bran was converted to vanillic acid using engineered Pseudomonas putida KT2440. The strain was engineered by rendering the vanAB gene nonfunctional and obtaining the mutant defective in vanillic acid metabolism. Biotransformation of ferulic acid using resting Pseudomonas putida KT2440 mutant cells resulted in more than 95?±?1.4% molar yield from standard ferulic acid; while the corn bran derived ferulic acid gave 87?±?0.38% molar yield. With fermentation time of less than 24?h the mutant becomes a promising candidate for the stable biosynthesis of vanillic acid at industrial scale.  相似文献   

12.
Volatile phenols are produced by Dekkera yeasts and are of organoleptic importance in alcoholic beverages. The key compound in this respect is 4-ethylphenol, responsible for the medicinal and phenolic aromas in spoiled wines. The microbial synthesis of volatile phenols is thought to occur in two steps, beginning with naturally occurring hydroxycinnamic acids (HCAs). The enzyme phenolic acid decarboxylase (PAD) converts HCAs to vinyl derivatives, which are the substrates of a second enzyme, postulated to be a vinylphenol reductase (VPR), whose activity results in the formation of ethylphenols. Here, both steps of the pathway are investigated, using cell extracts from a number of Dekkera and Brettanomyces species. Dekkera species catabolise ferulic, caffeic and p-coumaric acids and possess inducible enzymes with similar pH and temperature optima. Brettanomyces does not decarboxylate HCAs but does metabolise vinylphenols. Dekkera species form ethylphenols but the VPR enzyme appears to be highly unstable in cell extracts. A partial protein sequence for PAD was determined from Dekkera anomala and may indicate the presence of a novel enzyme in this genus.  相似文献   

13.
The substrate specificity of the two polymerases (PhaC1 and PhaC2) involved in the biosynthesis of medium‐chain‐length poly‐hydroxyalkanoates (mcl PHAs) in Pseudomonas putida U has been studied in vivo. For these kind of experiments, two recombinant strains derived from a genetically engineered mutant in which the whole pha locus had been deleted (P. putida U Δpha) were employed. These bacteria, which expresses only phaC1 (P. putida U Δpha pMC‐phaC1) or only phaC2 (P. putida U Δpha pMC‐phaC2), accumulated different PHAs in function of the precursor supplemented to the culture broth. Thus, the P. putida U Δpha pMC‐phaC1 strain was able to synthesize several aliphatic and aromatic PHAs when hexanoic, heptanoic, octanoic decanoic, 5‐phenylvaleric, 6‐phenylhexanoic, 7‐phenylheptanoic, 8‐phenyloctanoic or 9‐phenylnonanoic acid were used as precursors; the highest accumulation of polymers was observed when the precursor used were decanoic acid (aliphatic PHAs) or 6‐phenylhexanoic acid (aromatic PHAs). However, although it synthesizes similar aliphatic PHAs (the highest accumulation was observed when hexanoic acid was the precursor) the other recombinant strain (P. putida U Δpha pMC‐phaC2) only accumulated aromatic PHAs when the monomer to be polymerized was 3‐hydroxy‐5‐phenylvaleryl‐CoA. The possible influence of the putative three‐dimensional structures on the different catalytic behaviour of PhaC1 and PhaC2 is discussed.  相似文献   

14.
Mineralization of uniformly radiolabeled [14C]lignocellulose and specifically radiolabeled [14C-lignin]lignocellulose from the freshwater sedgeCarex walteriana by five aero-aquatic fungi was investigated. The extent of mineralization varied among the five species from 2.2 to 4.2% for the lignin component and from 3.3 to 20.6% for the polysaccharide component. The extent of mineralization of both lignin and polysaccharide moieties by a mixed culture of the five fungi were generally markedly lower than by pure cultures, possibly due to the production of antimicrobial compounds.Spirosphaera foriformis, the most active strain in lignin as well as in polysaccharide mineralization, degraded ferulic acid faster than p-coumaric acid. Decomposition ofCarex walteriana lignocellulose by this strain resulted in decreased cinnamyl/vanillyl (C/V) and syringyl/vanillyl (S/V) ratios. Offprint requests to: M. Bergbauer.  相似文献   

15.
Aims: A novel ferulic acid esterase gene from rumen fungus Anaeromyces mucronatus was cloned, heteroexpressed in Escherichia coli and characterized. Methods and Results: A total of 30 clones exhibiting activity on α‐naphthyl acetate (α‐NA) were isolated from an A. mucronatus YE505 cDNA library. Sequence analysis revealed that these clones represented two esterase‐coding sequences. The gene, fae1A, showed highest amino acid sequence identity to CE family 1 esterases from anaerobic micro‐organisms such as Orpinomyces sp., Ruminococcus albus and Clostridium thermocellum. The gene comprised 828 nucleotides encoding a polypeptide of 275 amino acids. The coding sequence was cloned into the pET30a expression vector and overexpressed in E. coli BL21 (DE3). Gene product Fae1A was found to exhibit activity against a number of substrates including naphthyl fatty acid esters, p‐nitrophenyl fatty acid esters and hydroxylcinnamic acid esters. Conclusions: Fae1A exhibited a lower Km and higher catalytic efficiency (kcat/Km) on ferulic acid esters than on α‐NA or p‐nitrophenyl acetate, suggesting that it has a higher affinity for ethyl and methyl ferulate than for the acetyl esters. It releases ferulic acid and p‐coumaric acid from barley straw. Activity of Fae1A was inhibited by the serine‐specific protease inhibitor, phenylmethylsulfonyl fluoride, indicating that a serine residue plays a role in its activity. Significance and Impact of the Study: To our knowledge, this is the first report of characterization of carbohydrate esterase gene from the genus of Anaeromyces.  相似文献   

16.
Pseudomonas fluorescens strain FE2 isolated in the presence of ferulic acid was able to grow on hydroxylated and methoxylated compounds bearing the hydroxyl group in the para position. By ethylmethansulphonate (EMS) and transposon mutagenesis, mutants unable to utilize ferulic acid have been selected. The metabolic characterization of the wild-type strain and its mutants indicates that ferulic acid was degraded through the formation of vanillic acid. Mutant FE2B in co-oxidation experiments with glutamate, is able to transform ferulic and dihydroferulic acid into vanillic acid, 4-hydroxycinnamic acid and 3 (4-hydroxyphenyl)-propanoic acid into 4-hydroxybenzoic acid, and 3-hydroxycinnamic acid into 3-hydroxybenzoic acid. The bioconversion of hydroxylated aromatic substrates by the FE2B mutants suggests that the presence of a hydroxyl group on the aromatic ring is required for deacetylase activity.  相似文献   

17.
Lignocellulose‐derived hydrolyzates typically display a high degree of variation depending on applied biomass source material as well as process conditions. Consequently, this typically results in variable composition such as different sugar concentrations as well as degree and the presence of inhibitors formed during hydrolysis. These key obstacles commonly limit its efficient use as a carbon source for biotechnological conversion. The gram‐negative soil bacterium Pseudomonas putida KT2440 is a promising candidate for a future lignocellulose‐based biotechnology process due to its robustness and versatile metabolism. Recently, P. putida KT2440_xylAB which was able to metabolize the hemicellulose (HC) sugars, xylose and arabinose, was developed and characterized. Building on this, the intent of the study was to evaluate different lignocellulose hydrolyzates as platform substrates for P. putida KT2440 as a model organism for a bio‐based economy. Firstly, hydrolyzates of different origins were evaluated as potential carbon sources by cultivation experiments and determination of cell growth and sugar consumption. Secondly, the content of major toxic substances in cellulose and HC hydrolyzates was determined and their inhibitory effect on bacterial growth was characterized. Thirdly, fed‐batch bioreactor cultivations with hydrolyzate as the carbon source were characterized and a diauxic‐like growth behavior with regard to different sugars was revealed. In this context, a feeding strategy to overcome the diauxic‐like growth behavior preventing accumulation of sugars is proposed and presented. Results obtained in this study represent a first step and proof‐of‐concept toward establishing lignocellulose hydrolyzates as platform substrates for a bio‐based economy.  相似文献   

18.
Vanillin is one of the world's principal flavoring compounds, and is used extensively in the food industry. The potential vanillin production of the bacteria was compared to select and clone genes which were appropriate for highly productive vanillin production byE. coli. Thefcs (feruloyl-CoA synthetase) andech (enoyl-CoA hydratase/aldolase) genes cloned fromAmycolatopsis sp. strain HR104 andDelftia acidovorans were introduced to pBAD24 vector with PBAD promoter and were named pDAHEF and pDDAEF, respectively. We observed 160 mg/L vanillin production withE. coli harboring pDAHEF, whereas 10 mg/L of vanillin was observed with pDDAEF. Vanillin production was optimized withE. coli harboring pDAHEF. Induction of thefcs andech genes from pDAHEF was optimized with the addition of 13.3 mM arabinose at 18 h of culture, from which 450 mg/L of vanillin was produced. The feeding time and concentration of ferulic acid were also optimized by the supplementation of 0.2% ferulic acid at 18 h of culture, from which 500 mg/L of vanillin was obtained. Under the above optimized condition of arabinose induction and ferulic acid supplementation, vanillin production was carried out with four different types of media, M9, LB, 2YT, and TB. The highest vanillin production, 580 mg/L, was obtained with LB medium, a 3.6 fold increase in comparison to the 160 mg/L obtained before the optimization of vanillin production.  相似文献   

19.
Occurrence of feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase (ech) genes responsible for the bioconversion of ferulic acid to vanillin have been reported and characterized from Amycolatopsis sp., Streptomyces sp., and Pseudomonas sp. Attempts have been made to express these genes in Escherichia coli DH5α, E. coli JM109, and Pseudomonas fluorescens. However, none of the lactic acid bacteria strain having GRAS status was previously proposed for heterologous expression of fcs and ech genes for production of vanillin through biotechnological process. Present study reports heterologous expression of vanillin synthetic gene cassette bearing fcs and ech genes in a dairy isolate Pediococcus acidilactici BD16. After metabolic engineering, statistical optimization of process parameters that influence ferulic acid to vanillin biotransformation in the recombinant strain was carried out using central composite design of response surface methodology. After scale-up of the process, 3.14 mM vanillin was recovered from 1.08 mM ferulic acid per milligram of recombinant cell biomass within 20 min of biotransformation. From LCMS-ESI spectral analysis, a metabolic pathway of phenolic biotransformations was predicted in the recombinant P. acidilactici BD16 (fcs +/ech +).  相似文献   

20.
Efficient utilization of lignocellulosic Miscanthus biomass for the production of biochemicals, such as ethanol, is challenging due to its recalcitrance, which is influenced by the individual plant cell wall polymers and their interactions. Lignocellulosic biomass composition differs depending on several factors, such as plant age, harvest date, organ type, and genotype. Here, four selected Miscanthus genotypes (Miscanthus sinensis, Miscanthus sacchariflorus, Miscanthus × giganteus, Miscanthus sinensis × Miscanthus sacchariflorus hybrid) were grown and harvested, separated into stems and leaves, and characterized for their non‐starch polysaccharide composition and structures, lignin contents and structures, and hydroxycinnamate profiles (monomers and ferulic acid dehydrodimers). Polysaccharides of all genotypes are mainly composed of cellulose and low‐substituted arabinoxylans. Ratios of hemicelluloses to cellulose were comparable, with the exception of Miscanthus sinensis that showed a higher hemicellulose/cellulose ratio. Lignin contents of Miscanthus stems were higher than those of Miscanthus leaves. Considering the same organs, the four genotypes did not differ in their Klason lignin contents, but Miscanthus × giganteus showed the highest acetylbromide soluble lignin content. Lignin polymers isolated from stems varied in their S/G ratios and linkage type distributions across genotypes. p‐Coumaric acid was the most abundant ester‐bound hydroxycinnamte monomer in all samples. Ferulic acid dehydrodimers were analyzed as cell wall cross‐links, with 8‐5‐coupled diferulic acid being the main dimer, followed by 8‐O‐4‐, and 5‐5‐diferulic acid. Contents of p‐coumaric acid, ferulic acid, and ferulic acid dimers varied depending on genotype and organ type. The largest amount of cell wall cross‐links was analyzed for Miscanthus sinensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号